
Abstract: With the growth of trends in computing and requirement

for developing a reliable computing environment the need for

performing tasks in distributed manner has gained much

importance. Atomic commit protocols are used to preserve the

ACID property in distributed systems when several sites need to

update their database with the same information. A variety of

protocols have been proposed for last few decades, but among all

Two-Phase Commit (2PC) are most widely used. 2PC is a blocking

protocol, i.e. If a coordinator fails while the participants are

waiting for a decision in its uncertain state, all the participants

remain in a blocked state till the coordinator recovers and

terminates the transaction. This is undesirable as these sites may

be holding locks on the resources. In the event of message loss, the

2PC protocol will result in the sending of more messages. As an

alternative, non-blocking atomic commit protocol has been

suggested: This non-blocking protocol is Three-Phase Commit

(3PC) protocol, which requires an extra phase (pre-commit) to

remove blocking state.

Although, the existing protocols are sufficient to ensure that ACID

properties are maintained in a distributed transaction

environment, but the substantial cost associated with the normal

transaction execution adversely affects the performance of the

system. These protocols require so many messages transfer from

the coordinator to participants and vice versa during different

phases and corresponding increase communication and time

complexity and hold the locks acquire by different participants till

the end of last phase, forcing other transactions also to be blocked

just because of the objects that are locked. All the existing

protocols give the same performance for both deferred and

immediate consistency constraints databases. Lots of protocols are

being proposed and mainly the concentration was to make the 2PC

protocol non-blocking or to minimize the blocking possibilities in

2PC. There has been a renewed interest in developing and

optimization of more efficient ACPs. This is also crucial in modern

electronics and e-commerce environment which are characterized

by high volume of transactions at several levels.

This paper is an effort to propose a new technique to optimize

atomic commit protocols by optimizing voting phase based on

deferred and immediate consistency constraints. Also an attempt

has been made to propose reduction in communication complexity

which will require less number of messages to be shared between

coordinator and participants, the cost of execution as well as time

delays.

Keywords: Distributed Database System, Two Phase Commit

RC-OCP: Reverse Coordinated Optimized
Commit Protocol

1 2
Ganpat Singh Chauhan , Mukesh Kumar Gupta

1 2Email- ganpatchauhan@gmail.com, mukeshgupta@skit.ac.in

1,2 Department of Computer Engineering
1,2Swami Keshvanand Institute of Technology Management & Gramothan, Jaipur

Protocol (2PC), Three Phase Commit Protocol (3PC), Non-

Blocking Commit Protocol, Deferred and Immediate consistency

constraints.

1. INTRODUCTION

It is found and proved by investigating the reliability of atomic
commit protocols that blocking is unavoidable after certain site
or network failures [1]. The existing protocols are sufficient
enough to maintain ACID properties in the distributed
transaction environment, but at a substantial cost during normal
transaction execution, which adversely affects the performance
of the system [2]. Atomic commit protocols require so many
messages transfer from coordinator to participants and vice
versa during phase1, phase2 and/or phase3 and corresponding
increase communication and time complexity and hold the
locks acquire by different participant till the end of last phase;
this forces other transactions also to be blocked just because of
the objects that are locked. Despite all the drawbacks of 2PC
protocol like blocking, its high cost of logging and the number
of messages [3]; it is supported by all commercial database
systems. For these reasons, there has been a renewed interest in
developing more efficient ACPs and optimization for modern e-
commerce environment and electronics services that are
characterized by high volume of transactions [4]

The structure of the paper: Section II, III and IV introduce
review of the 2PC, 3PC and other protocols respectively.
Section V shows survey concludes, Section VI gives proposed
methodology, and Section VII gives performance comparison
and analytical evaluation.

2. TWO-PHASE COMMIT (2PC) PROTOCOL

A. General Description

The most used protocol in distributed transaction processing
systems is 2PC Protocol.In 2PC a single master (coordinator) is
used to collect each slave's (participant's) status of the work; the
coordinator decides to commit the transaction if all participants
are ready to commit, otherwise the transaction is aborted.

B. Issues with 2PC

There are two major issues with 2PC:

1) Blocking: The 2PC goes to a block state by the failure of the
coordinator and all participants are live and no participant is having
knowledge of decision from coordinator when the participants are
in an uncertain state. The participants keep locks on resources until

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

1

they receive the next message from the coordinator after its
recovery.

2) State Inconsistency: Global State Vector (GST) in commit
protocols works as a container of states for every participating
node regarding a single transaction. The global transition state
comprises this state vector and outstanding messages in the
network. I call a state inconsistent when its global state vector
contains both the commit and abort states. This inconsistency
can be observed using a state vector, particularly when the
participant is in its pre-commit state and fails. The coordinator
shows the committed state after sending a commit message, but
for the failed participant the protocol is declared no resilient in
for assigning new state [3, 5].

A. General Description

Three-Phase Commit Protocol (3PC) is a non-blocking
protocol, contrary to the 2PC. Here a new state called
“precommit” is introduced for the coordinator and participants.
The coordinator gets to this “pre-commit” state only if all other
participants have voted “YES” to commit. In case this state is
not reached, the participant will abort and release the blocked
resources after a specific time. When the coordinator gets the
“pre-commit” state, then there is only one option to abort the
transaction and that is a timeout, which corresponds to a failure
of a participant, otherwise the transaction gets completed with
an acknowledgement from the participants. It is also possible
that the coordinator fails at this state; even then it will proceed
for global commit.

B. Issues with 3PC

Even if 3PC present the non-blocking scenario as compare to
2PC but still 2PC is most popular atomic commit protocol. The
major issues with 3PC are as:

3PC protocol is problematic only when there are multiple sites
failures. For example, let's consider a case where the
coordinator is in “pre-commit” state and fails just after sending
a commit message and the participant also fails just before or
after receiving this message. So by its failure, the participant
moves to the aborted state, but according to the protocol
specifications given in, the coordinator goes to the commit state,
either it fails or receives acknowledgement. Hence, the
coordinator moves to the committed state without receiving
acknowledgement and the failed participant moves to the
aborted state without sending the acknowledgement. In this
way, coordinator and participant show different final states due
to their failures. The 3PC is also problematic when overhead
and time is crucial because it require extra phase to make
protocol non-blocking, which require extra space and time to
complete the task. It involves a great deal of overhead as
compared to simple protocols and multiple logs forced write
which increase latency. For short lived transactions, like
Internet application performance of 3PC is again a trade off [3,
6].

3. THREE PHASE COMMIT PROTOCOL (3PC)

4. OTHER PROTOCOLS

The number of communication steps, the number of log writes
and its execution time at the coordinator and at each participant
influence the efficiency of a commit protocol. The blocking or
no blocking nature and difference in recovery procedures are
other important factors that have a vital impact on the overall
commit protocol performance. Below given protocols are some
of the variants of 2PC and 3PC to get equally good
performance.

Presumed Abort (prA) and Presumed Commit (prC): Database
research has been done on ways to get most of the benefits of the
two-phase commit protocol while reducing costs by protocol
optimizations and protocol operations saving under certain
system's behavior assumptions.

Presumed abort or Presumed commit are common such
optimizations. An assumption about the outcome of
transactions, either commit, or abort, can save both messages
and logging operations by the participants during the 2PC
protocol's execution. For example, when presumed abort, if
during system recovery from failure no logged evidence for
commit of some transaction is found by the recovery procedure,
then it assumes that the transaction has been aborted, and acts
accordingly. This means that it does not matter if aborts are
logged at all, and such logging can be saved under this
assumption. Typically a penalty of additional operations is paid
during recovery from failure, depending on optimization type.
Thus the best variant of optimization, if any, is chosen
according to failure and transaction outcome statistics.

 Both PrA and PrC seek to reduce commit process overhead by
reducing acknowledge messages and forced log writes in the
decision phase, while the voting phase remains the same as for
2PC. PrA is preferable where the number of aborted
transactions is more than the number of committed transaction;
prC is preferred in systems where the number of committed
transactions is more than the number of aborted transactions, a
common situation considering present system reliability [7].

One Phase Commit: In One-Phase Commit (1PC) protocol the
Early Prepare (EP) protocol forces each cohort to enter a
prepare state after the execution of each operation. It makes
cohort's vote implicitly YES and this protocol exploits the
Presumed Commit as well. But a coordinator may have to force
multiple membership records, because the transaction
membership may grow as transaction Execution progresses.
The main drawback comes from the fact that the log of each
operation has to be written in the cohort's log disk per operation,
it leads to a serious disk blocking time. Only if every sever has a
stable storage so that log forces are free, EP can be considered to
be used. Above all, 1PC is however rarely considered in
practice because of strong assumption it requires from the
distributed transaction system [3, 7, 8, 9].

Optimized Commit Protocol works on reducing the waiting
time of lock by releasing the locks the current transactions hold.
Even if the committing transaction is aborted there is no
possibility of cascading aborts, since the lock releasing is done
in a managed manner. Due to this reduction of the blocking due

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

2

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

that are locked. It is observed that most the commit protocols
give same performance for both immediate and deferred
consistency constraints and some sort of optimization is
required in existing protocols to decrease number of messages
exchange, log writes and message complexity; This is crucial in
modern application services and e-commerce environment that
required high volume of transactions. [13, 14, 15].

to releasing of locks occupied on prepared data this protocol has
a better performance [3, 4].

Extended Three Phase Commit Protocol is one of the important
issue of distributed system is to improve concurrency control.
Because of absence of global clock and lack of shared memory;
concurrency control in distributed system is very difficult task.
The basis of this protocol is the division of all sites into two
groups depending upon the number of queries generated and
importance of the queries at these sites. The sites where more
queries are generated are considered as primary sites and those
having less are considered as secondary sites. This protocol
works only for transactions that access a single database object
[10].

Reducing the blocking in 2PC employing backup sites In
distributed database systems, the blocking phenomena reduce
availability of the system since the blocked transactions keep all
the resources until they receive the final command from the
coordinator after its recovery. Although 3PC protocol
eliminates the blocking problem, it involves an extra round of
message transmission, which further degrades the performance
of DDBSs. This protocol proposes a backup commit (BC) by
including backup phase to 2PC protocol. In this, one backup site
is attached to each coordinator site. After receiving responses
from all participants in the first phase, the coordinator
communicates its decision only to its backup site in the backup
phase. Afterwards, it sends the final decision to participants.
When blocking occurs due to the failure of the coordinator site,
the participant sites consult coordinator's backup site and
follow termination protocols. In this way, BC protocol achieves
non-blocking property in most of the coordinator site failures.
However, in the worst case, the blocking can occur in BC
protocol when both the coordinator and its backup site fail
simultaneously. If such a rare case occurs, the participants wait
until the recovery of either the coordinator site or the backup
site. BC protocol suits best for DDBS environments in which
sites fail frequently and messages take longer delivery time
[11].

After reviewing all the above discussed commit protocols ,an
evaluation is done as shown in TABLE 1 and Fig. 1 based on
some performance parameters like message complexity, time
complexity, number of log writes and blocking/non-blocking.
Here n represent the number of participants.

It is found that the existing protocols are sufficient enough to
maintain ACID properties in the distributed transaction
environment [1, 12]. Protocols are being proposed and mainly
the concentration was to make the two phase commit protocol
non-blocking or to minimize the blocking possibilities in
distributed transaction. Atomic commit protocols that are
summarized in Table1 it is clear that they all require so many
messages transfer from coordinator to participants and vice
versa during different phases and corresponding increase
communication and time complexity and hold the locks acquire
by different participant till the end of last phase. This forces
other transactions also to be blocked just because of the objects

5. PERFORMANCE AND SURVEY CONCLUSION

Table 1 : The Cost Of Different Protocols To Commit A Transaction

Protocol 2PC 3PC prA prC 1PC Extended

-3PC

2PC

Backup

Blocking High Very Less High High Less Very Less Very Less

Time Complexity

(rounds)
4 6 4 3 2 6 4

Message Complexity

(Complexity)
4n 6n 4n 3n 2n 6n 4n

Log Write 2+2n 2+2n 2+n 2+2n 2+n 2+2n 2+2n

Fig. 1: The cost of different existing protocols to commit a transaction

6. PROPOSED PROTOCOLS

6.1 Objective

The 2PC protocol is one of the most widely used ACP. 2PC and
3PC ensures atomicity and interdependent recovery, but at a
substantial cost during normal transaction execution, which
adversely affects the performance of the system. This is due to
the cost associated with its message complexity, time
complexity and log writes. For this reason, there has been a re-
newed interest in developing more efficient and optimized
ACPs. This is crucial in modern application services and e-
commerce environment that required high volume of
transactions.

The proposed optimized protocols, which require less number
of messages to be shared between coordinator and participants;
corresponding decrease communication complexity and time

3

complexity for the transaction. The protocols are based on
deferred or immediate consistency constraints where
optimization of voting phase is done [16].

6.2 Optimized Two Phase Commit (O-2PC) Protocol

In Distributed Database Environment once the coordinator has
initiated the transaction and distributed it among different
participant nodes, the Local Transaction Manager (LTM) at
each participant node is now responsible to deal with local sub-
transaction. Once the Coordinator decides to commit the
transaction, it asks for all the participants whether to COMMIT
or ABORT the current running transaction. Both 2PC and 3PC
requires initiating the step from the coordinator side (voting
phase) to start commit protocol. This approach requires so
many messages transfer from coordinator to participants and
vice versa during phase1, phase2 and/or phase3 and
corresponding increase overhead and hold the locks acquire by
different participant till the end of last phase. This forces other
transactions also to be blocked just because of the objects that
are locked [17, 18].

The proposed solution is that once the transaction has initiated
by coordinator and all the participant nodes are identified and
their LTM is activated, the coordinator will then continue with
its own work and never ask participants for their voting
decision. As the coordinator maintains a log file for all the
current transaction's participants, as soon as any participant
finishes its works it will respond to coordinator with YES (for
Commit) or NO (for Abort) decision message (in case of
immediate consistency constraints). Otherwise if transaction
needs deferred consistency constraints to be applied then all the
participants are required to send their voting decision just after
commit protocol is started. So when the transaction is
completed and commit protocol is started there are two possible
scenarios:

1. If the coordinator already has all the votes from all the
participants with it (immediate consistency constraints); the
coordinator decides on the basis of vote messages from all the
participants.

2. Else (in case of deferred consistency constraints)
Coordinator waits for the vote messages from all the
participants. As soon as coordinator received all the vote
messages then it will decides on the basis of vote messages.

In proposed protocols whether it is deferred or immediate
consistency constraints; initiation of the commit protocol will
be from participant side; that's why I called the proposed
protocol as Reverse Coordinated Atomic Commit Protocols.

Basics Structure of O-2PC: assuming no failures O-2PC goes
roughly as follows:

1. There are two possible scenarios:

a. If the coordinator already has all the votes from all the
participants with it (in case of Immediate Consistency
Constraints) then:

If all the votes are YES and the coordinator's own vote is YES,
then the coordinator decides commit and multicast COMMIT
message to all participants. Otherwise, the coordinator decides

abort and multicast ABORT message to all participants that
voted YES (those that voted NO already decided Abort). Goto
step 3.

b. Else (in case of deferred consistency constraints) each
participant will send its voting message to the coordinator: YES
or NO. If the participant vote is NO, it decides abort and stops.

2. All the vote messages from all participants are collected by
the coordinator. If all the votes are YES and the coordinator's
own vote is YES, then the coordinator decides commit and
multicast COMMIT message to all participants, Otherwise, the
coordinator decides abort and multicast ABORT message to all
participants that voted YES (those that voted NO already
decided Abort)., then the coordinator stops.

3. All those participants that have voted YES wait for a decision
(COMMIT or ABORT) message from the coordinator and
when received, it proceeds accordingly and stops.

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

Fig. 2: Flow chart of Optimized- 2PC Protocol

The two phases of O-2PC (deferred consistency constraints) are
the voting phase steps (1(b)) and the decision phase (steps (2)
and (3)). For Immediate consistency constraints scenario
voting phase is completely eliminated and we have only the
decision phase (steps 1(a) and (3)). A participant's uncertainty
period starts when it sends a YES to the coordinator and ends
when it receives a COMMIT or ABORT. Since the coordinator
decides as soon as it votes - with the knowledge, of course, of
the participants votes the coordinator has no uncertainty period.
Fig. 2 shows the flow chart of the above described steps for O-
2PC.

6.3 State Transition Diagram for O-2PC:

Fig. 3 shows state transition diagram of O-2PC for immediate
consistency constraints. In case of immediate constraints the
coordinator decides whether to commit or abort the transaction
as soon as commit protocol is started because the coordinator
already has all the vote messages with it. Similarly each
participant that has voted YES, enters into WAIT state and waits

4

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

for decision message from coordinator as commit protocol is
started. It is clear that in case of immediate consistency
constraints voting phase is completely eliminated and
correspondingly reduces number of rounds, exchanged
messages and log writes. Fig. 4 shows state transition diagram
of O-2PC for deferred consistency constraints. In case of
deferred constraints the coordinator enters into WAIT state as
soon as commit protocol is start and waits for vote messages
from each participant. The coordinator decides whether to
commit or abort the transaction. As soon as all the vote
messages are collected from each participant and multicast its
decision to each participant that has voted YES.

concept of timeout is used.Therefore; a process must keep some
information in stable storage, specifically in the Distributed
Transaction (DT) log.

There are two places in above protocol where a process is
waiting for a message: in the beginning of (steps (2) and (3)).In
step (2) the coordinator is waiting for YES or NO messages
from all the participants and has not yet reached any decision. In
addition, no participant can have decided Commit. Therefore,
the coordinator can decide Abort but must send ABORT to
every participant from which it received a YES.

A participant p1 that voted YES is waiting for a decision
(COMMIT or ABORT) from the coordinator, in step (3). At this
point p1 is uncertain. So, unlike the previous scenario (process
unilaterally decision), here to find out what to decide the
participant must consult with other processes. This consultation
is by meant of a termination protocol.

The conventional termination protocol is the following: p1
remains blocked until it can re-establish communication with
the coordinator. Then, the coordinator can tell p1 the
appropriate decision. The coordinator can surely do so, since it
has no uncertainty period. This termination protocol satisfies
condition ACP5, because if all failures are repaired, p1 will be
able to communicate with the coordinator and thereby reach a
decision.

The drawback of this termination protocol is that p1 may be
blocked unnecessarily, For example, suppose there are two
participants' p1 and p2. The coordinator might send a COMMIT
or ABORT to p2 but fail just before sending it to p1. Thus, even
though p1 is uncertain, p2 is not. If p1 can communicate with
p2, it can find out the decision from p2. It need not block waiting
for the coordinator's recovery.

This suggests the need for participants to know each other, so
they can exchange messages directly (without the interference
of the coordinator). Recall that our description of the atomic
commitment problem states that the coordinator knows the
participants and the participants know the coordinator, but that
the participants do not initially know each other. It is the case
that the coordinator attaches the list of the participant's
identities with the transaction submission messages to each of
them.

This discussion leads us to the cooperative termination
protocol: A participant p1 that times out while in its uncertainty
period sends a DECISION-REQ message to every other
process, p2, to inquire whether p2 either knows the decision or
can unilaterally reach one. In this scenario, p1 is the initiator
and p2 a responder in the termination protocol. There are three
cases:

1. p2 has already decided commit (or abort): p2 simply sends a
COMMIT (or ABORT) to p1, and p1 decides accordingly.

2. p2 has not voted yet: p2 can unilaterally decide Abort. It then
sends an ABORT to p1, and p1 therefore decides Abort.

3. p2 has voted YES but has not yet reached a decision: p2 is
also uncertain and therefore cannot help p1 reach a decision.

With this protocol, if p1 can communicate with some p2 for

Fig. 3: State Diagram of O-2PC for Immediate Consistency Constraints

Similarly each participant that has voted YES enters into
READY state and sends their vote message to the coordinator
as commit protocol is started. It is clear that in case of deferred
consistency constraints voting phase is partially eliminated and
correspondingly reduces number of rounds, exchanged
messages and log writes.

Fig. 4: State Diagram of O-2PC for Deferred Consistency Constraints

Coordinator Participant

6.4 Timeout Actions

In Distributed system there are situations where a process needs
to wait for message to arrive. To avoid the infinite waiting, the

Coordinator Participant

5

which either (1) or (2) holds, then p1 can reach a decision

without blocking. On the other hand, if (3) holds for all

processes with which p1 can communicate, and then p1 is

blocked.

This will persist until enough failures are repaired to enable p1

to communicate with a process p2 for which either (1) or (2)

applies. At least one such process exists, namely, the

coordinator.

In summary, even though the cooperative termination protocol

reduces the probability of blocking, it does not eliminate it.

However, even with the cooperative termination protocol, this

protocol is subject to blocking even if only site failures occur.

6.5 Recovery from failure

Consider a process p1 recovering from a failure; p1 must reach

a decision consistent with that reached by the other processes -

if not immediately upon recovery, then some time after all other

failures are also repaired.

Suppose that when p1 recovers; it remembers its state at the

time it failed. If p1 failed before having sent YES to the

coordinator (step (2) of O-2PC), then p1 can unilaterally decide

abort and this is part of Transaction execution. Also, if p1 failed

after having received a COMMIT or ABORT from the

coordinator or after having unilaterally decided Abort, then it

has already decided. In these cases, p1 can recover

independently [19].

However, if p1 failed while in its uncertainty period, then it

cannot decide on its own when it recovers. Since it had voted

YES, it is possible that all other processes did too, and they

decided commit while p1 is down. But it is also possible that

some processes either voted NO or didn't vote at all and abort

was decided. p1 can't distinguish these two possibilities based

on information available locally and must therefore consult

with other processes to make a decision. This is a reflection of

the inability to have independent recovery.

In this scenario, p1 is exactly in the same state as what it had

timed out waiting for a decision (COMMIT or ABORT) from

the coordinator. Thus, p1 can reach a decision by using the

termination protocol. Since p1 may be able to communicate

only with uncertain processes, it may be blocked

To remember its state at the time it failed, each process must

keep some information in its site's DT log, which survives

failures. Of course, each process has access only to its local DT

log. Assuming that the cooperative termination protocol is

used, here is how the DT log is managed.

1. When the coordinator is initiated by commit protocol, it

writes a start_O-2PC record in the DT log. This record contains

the identities of the participants.

2. If a participant votes YES, it writes a yes record in the DT log,

before sending YES to the coordinator. This record contains the

name of the coordinator and a list of the other participants

(which is provided by the coordinator). If the participant votes

NO, it writes no either before or after the participant sends NO

to the coordinator.

3. Before the coordinator sends COMMIT to the participants, it
writes a commit record in the DT log.

4. When the coordinator sends ABORT to the participants, it
writes an abort record in the DT log. The record may be written
before or after sending the messages.

5. A participant writes a commit (or abort) record in its DT log
after received decision (COMMIT or ABORT).

In this discussion, writing a commit or abort record in the DT
log is the act by which a process decides commit or abort.

At this point it is appropriate to comment briefly on the
interaction between the commitment process and the rest of the
transaction processing activity. Once the commit (or abort)
record has been written in the DT log, the DM can execute the
Commit (or Abort) operation. There are numbers of details
regarding how writing commit or abort records to the DT log
relates to the processing of the commit or abort operations by
the DM. For example, if the DT log is implemented as part of
the DM log, the writing of the commit or abort record in the DT
log may be carried out via a call to the Commit or Abort
procedure of the local DM. In general, such details depend on
which of the algorithms used by the local DM.

A distributed transaction's state that is executing at S can be
determined by examining its DT log as soon as S recovers from
a failure:

• If the DT log contains a start_O-2PC record, then S was the
host of the coordinator. If it also contains a commit or abort
record, then the coordinator had decided before the failure. If
neither record is found, the coordinator can now unilaterally
decide Abort by inserting an abort record in the DT log. For this
to work, it is crucial that the coordinator first insert the commit
record in the DT log and then send COMMIT (point (3) in the
preceding list).

• If the DT log doesn't contain a start_O-2PC record, then S
was the host of a participant.

There are three cases to consider:

1. The DT log contains a commit or abort record. Then the
participant had reached its decision before the failure.

2. The DT log does not contain a yes record. Then either the
participant failed before voting or voted NO. (This is why the
yes record must be written before YES is sent; see point (2) in
the preceding list.) It can therefore unilaterally abort by
inserting an abort record in the DT log.

3. The DT log contains a yes but no commit or abort record; then
the participant failed while in its uncertainty period. It can try to
reach a decision using the termination protocol. Recall that a
yes record includes the name of the coordinator and
participants, which are needed for the termination protocol.

A Fig. 5 gives the O-2PC protocol algorithm and the
cooperative termination protocol, incorporating the preceding
discussion on timeout actions and DT logging activity. We use
multicast, send and wait-for statements for inter-process
communication.

Although I have been presenting ACPs for a single transaction's

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

6

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

termination, it is clear that the DT log will contain records
describing the status of different transactions relative to atomic
commitment. Thus to avoid confusing records of different
transactions, the start_O-2PC, yes, commit, and abort records
must contain the name of the transaction to which they refer. In
addition, it is important to garbage collect DT log space taken
up by outdated information. There are two basic principles
regarding this garbage collection:

GCC1: A site cannot delete log records of a transaction T from
its DT log until at least after its RM has processed RM-Commit
(T) or RM-Abort (T).

GCC2: At least one site must not delete the records of
transaction T from its DT log until that site has received
messages indicating that RM-Commit (T) or RM-Abort (T) has
been processed at all other sites where T executed.

6.6 Coordinator's algorithm

write start_O-2PC and init record in local DT;

if all vote messages are not there with the coordinator /* for
deferred constraints */

{

wait for vote messages (YES/ NO) from all participants;

if timeout /* in case of failure of any participant*/

{

let P[n] be the processes from which YES was received;

write GLOBAL_ABORT record in local DT;

multicast GLOBAL_ABORT to all processes in P[n];

return;

}

}

 if all messages are YES and coordinator also voted YES

{

write GLOBAL_COMMIT to local DT;

multicast GLOBAL_COMMIT to all participants;

}

else / * only some of the processes voted YES * /

{

let P[n] be the processes from which YES was received;

write GLOBAL_ABORT record to local DT;

multicast GLOBAL_ ABORT to all processes in P[n];

}

return;

Participant's algorithm

 write init record in local DT;

 if vote message is not yet sent to the Coordinator /* for deferred
constraints */

 {

 if participant's vote is YES

{

write yes to local DT;

send YES to the coordinator;

}

else if participant's vote is NO

{

write no to local DT;

send NO to the coordinator;

return;

}

}

wait for decision (commit or abort) from coordinator

if timeout

{

initiate termination protocol;

}

if decision message received from coordinator is
GLOBAL_COMMIT

{

write commit record to local DT;

}

else / *decision GLOBAL_ABORT was received from the
coordinator * /

write GLOBAL_ABORT record in local DT;

return;

 Fig. 5. Algorithm for Optimized 2 Phase Commit Protocol

This study of ACPs from the viewpoint of a single transaction
has also hidden the issue of site recovery. When a site recovers,
it must complete the ACP for all transactions that might not
have committed or aborted before the failure. At what point can
the site resume normal transaction processing? After the
recovery of a centralized DBS, transactions cannot be
processed until Restart has terminated, thereby restoring the
committed database state. A similar strategy for the recovery of
a site in a distributed DBS is unattractive, in view of the
possibility that some transactions are blocked. In this case, the
DBS at the recovered site would remain inaccessible until all
transactions blocked at that site were committed or aborted.

7. EVALUATION AND RESULTS ANALYSIS

In this section I evaluate proposed atomic commit protocols and
then their result analysis is being done.

Let me now examine how O-2PC fares with respect to
resiliency, blocking, log write, and time and message
complexity.

Resiliency: O-2PC is resilient to both site failures and
communication failures, be they network partitions or timeout
failures. To see this, observe that my justification for the
timeout actions in the previous subsection did not depend on the
timeout's cause. The timeout could be due to a site failure, a
partition, or merely a false timeout.

Blocking: O-2PC is subject to blocking. A process will become
blocked if it times out while in its uncertainty period and can

7

Blocking

Time

Complexity

Message

Complexity

(Overhead)

Log Write

Protocol 2PC

High

4

4n

2+2n

3PC

Very

Less

6

6n

2+2n

Very

Less

5

5n

2+2n

Deferred

Consistency

Constraints

Very

Less

4

4n

2+2n

Immediate

Consistency

Constraints

High

3

3n

2+2n

Deferred

Consistency

Constraints

Less

2

2n

2+n

Immediate

Consistency

Constraints

O-2PC O-3PC

only communicate with processes that are also uncertain. In
fact, O-2PC may block even in the presence of only site failures.
To calculate the probability of blocking precisely, we must
know the probability of failures.

Time Complexity: In the absence of failures, for deferred
consistency constraints:

O-2PC requires three rounds: (1) all the participants send their
votes to coordinator (2) the coordinator broadcasts the decision,
and (3) all the participants acknowledge to coordinator. For
Immediate consistency constraints: O-2PC requires only two
round; (1) the coordinator broadcast its decision, and (2) all the
participants acknowledge to coordinator.

If failures happen, then the termination protocol may need two
additional rounds: one for a participant that timed out to send a
DECISION-REQ, and the second for a process that receives
that message and is outside its uncertainty period to reply.

Several participants may independently invoke the termination
protocol. However, the two rounds of different invocations can
overlap, so the combined effect of all invocations of the
termination protocol is only two rounds. Thus, in the presence
of failures it will take up to four rounds (Deferred consistency
constraints) and 3 rounds (Immediate consistency constraints)
for all processes that aren't blocked or failed to reach a decision.
This is independent of the number of failures! The catch is that
some processes may be blocked. By definition, a blocked
process may remain blocked for an unbounded period of time.
Therefore, to get meaningful results, I exclude blocked
processes from consideration in measuring time complexity.

Message Complexity: Let n be the number of participants (so
the total number of processes is n + 1). In each round of O-2PC,
n messages are sent. Thus, in the absence of failures, the
protocol uses 2n messages for deferred consistency constraints
and n messages for immediate consistency constraints. All
participants that has voted YES invoked the cooperative
termination protocol but don't receive COMMIT or ABORT

from the coordinator. Let there be m such participants, ≤ m ≤

n. Thus m processes will initiate the termination protocol, each
sending n DECISION-REQ messages. At most n-m+1 process
(the maximum that might not be in their uncertainty period) will
respond to the first DECISION-REQ message. As a result of
these responses, one more process may move outside its
uncertainty period and thus respond to the DECISION-REQ
message of another initiator of the termination protocol. Thus,
in the worst case, the number of messages sent by the
termination protocol (with m initiators) will be:

(in case of Immediate consistency constraints) for the entire O-
2PC protocol.

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

Elementary calculus shows that this quantity is maximized
when n = m, that is, when all participants timeout during their
uncertainty period. Thus, the termination protocol contributes
up to n(3n + 1)/2 messages, for a total of n(3n + 6)/2 (in case of
deferred consistency constraints) and for a total of n(3n + 4)/2

Table 2: The Cost Of Different Protocols To Commit A Transaction

Log Writes: In absence of failure O-2PC requires 2+2n logs

writes in case deferred consistency constraints and 2+ n logs

writes for immediate consistency constraints.

Fig. 5: The cost of different protocols to commit a transaction

8

Blocking

Time

Complexity

Message

Complexity

(Overhead)

Log Write

Protocol 2PC

High

4

4n

2+2n

3PC

Very

Less

4

4n

2+2n

Very

Less

3

3n

2+2n

Deferred

Consistency

Constraints

Very

Less

2

2n

2+n

Immediate

Consistency

Constraints

High

3

3n

2+2n

Deferred

Consistency

Constraints

Less

2

2n

2+n

Immediate

Consistency

Constraints

O-2PC O-3PC

Table 3: The Cost Of Different Protocols To Abort A Transaction

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

Result Analysis: TABLE 2 and TABLE 3 compare the costs of
different protocols for the commit and abort case on per
transaction basis, respectively. It is clear that O-2PC improved
performance but blocking problem is still there; so O-3PC is
also compared here.

The comparison is done on four parameters as: Blocking, Time
complexity, message complexity and no. of log write. Here n is
number. of participants used in distributed transaction. One
thing to make clear here is that proposed protocol is not to

optimize blocking problem rather our concentration is to
optimize overhead as compare to basic 2PC and 3PC protocol.
By analysis all the value in above tables and Fig. 5 and Fig 6 it is
clears that both O-2PC and O-3PC gives equal performance for
most of the parameter.

Commit protocols are used to provide reliable methods to
enforce ACID properties in database transactions. Current data
applications demand much lower execution time and enhanced
reliability even in the event of failure and concurrency. There
has been a lot of work done on commit protocols and recently
there is renewed interest in searching for efficient and reliable
commit protocols which can fulfill the needs of present mobile
computing and real time computing. Modern Internet database
applications such as those commonly found in electronic
commerce and electronics services require coordination
protocols with reduced overhead. In this paper we critically
analyzed two phase commit protocols and three phase commit
protocol both on the basis of messages to share, time and cost
and also on log force write .This is in order to increase customer
satisfaction through enhanced system's throughput. To this end,
the proposed protocols can get the performance advantages of
2PC and 3PC in optimized way.

Optimized protocols further enhancement, such as to analyzed
performances in failure environment and multilevel transaction
execution model. These enhancements and extension are left as
part of future work in this direction.

This work can be extended in other possible directions as
follows: A more realistic simulation would allow evaluating the
performance of studied optimized protocols empirically in
order to reveal any hidden costs that cannot be captured
analytically.

REFERENCES

[1] Eric C. Cooper,” Analysis of Distributed Commit Protocols”, Computer
Science Division – EECS, University of California ACM O-89791-073-
7/82/006/0175, 1982.

[2] Yousef J. Al-Houmaily, “On Interoperating Incompatible Atomic
Commit Protocols in Distributed Databases”, Department of Computer
and Information Programs, Institute of Public Administration, 978-1-
4244-0012-6 , 149 - 156 ,14-16 Nov, 2005.

[3] Shishir Kumar, Sonali Barvey,” Non-Blocking Commit Protocol”,
Department of CSE, IJCSNS International Journal of Computer Science
and Network 172 Security, VOL.9 No.8, August 2009..

[4] Y. J. Al-Houmaily and P. K. Chrysanthis,” 1-2PC: The One-Two Phase
Atomic Commit Protocol”, Proc. Of the ACM SAC, 684-691, 1-58113-
812-1, 2004.

[5] Muhammad Atif, “Analysis and Verification of Two-Phase Commit &
Three- Phase Commit Protocols”, Emerging Technologies, 2009. ICET
2009. International Conference, Department of Mathematics and
Computer Science, Technische Universities Eindhoven, 326 – 331, 978-
1-4244-5632-1/09, 19-20 Oct. 2009.

[6] Y. J. Al-Houmaily and P. K. Chrysanthis, “Atomicity, with Incompatible
Presumptions”, Proc. of the 18th, ACM PODS, pp. 306-315, 1-58113-
062-7, 1999.

[7] V. Manikandan1, R.Ravichandran1, R.Suresh1, F. Sagayaraj Francis,”
An Efficient Non Blocking Two Phase Commit Protocol for Distributed
Transactions”, Vol.2, Issue.3, pp-788-791 ISSN: 2249-6645. 2012.

[8] M. Abdullah, R. Guerraoui and P. Pucheral, “One-Phase Commit: Does
it make sense? “, Proc. of the Int'l Conf. on Parallel and Distributed
Systems, ISBN: 0-8186-8603-0, ISSN: 1521-9097, 182 – 192, 14-16
Dec 1998.

8. CONCLUSION AND FUTURE WORK

Fig. 6: The cost of different protocols to abort a transaction

9

[9] Inseon Lee, Heon Y. Yeom, “A Single Phase Distributed Commit
Protocol for Main Memory Database Systems”, Proceedings of the
International Parallel and Distributed Processing Symposium
(IPDPS.02), 0-7695-1573-8, 15-19 April 2001

[10] Poonam Singh, Parul Yadav, Amal Shukla and Sanchit Lohia, “An
Extended Three Phase Commit Protocol for Concurrency Control in
Distributed Systems”, International Journal of Computer Applications
(0975 – 8887) Volume 21– No.10, May 2011

[11] P.Krishna Reddy and Masaru Kitsuregawa, “Reducing the blocking in
two-phase commit protocol employing backup sites”, Cooperative
Information Systems, 1998. Proceedings. 3rd IFCIS International
Conference, Inst. of Ind. Sci., Tokyo Univ., Japan, 0-8186-8380-5 , 406 -
415 ,20-22 Aug. 1998.

[12] Constantinos V. Papadopoulos, “On the Heterogeneity of Distributed
Databases Integrating Commit Protocols”, Dept. of Comput. Sci.,
Piraeus Univ., Greece, 0-8186-5840-1, 380 – 386, 21-24 Jun 1994.

[13] Sylvia, Vibha, R. B. Patel IEEE Member, “Queue Sensing Distributed
Real-time Commit Protocol: A New Dimension for Distributed Database
System”, 2009 International Conference on Advances in Recent
Technologies in Communication and Computing, 978-1-4244-5104-3,
829 - 834, 27-28 Oct. 2009.

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 1: 2014

[14] Udai Shanker, Nikhil Agarwal, Praphull Goel, Shalabh K. Tiwari,
Praveen Srivastava,”Real Time Commit Protocol-ACTIVE”, 2010
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 978-1-4244-8538-3 , 314 - 319 ,4-6 Nov. 2010.

[15] Ivana Popovic, Vladislav Vrtunski, “Formal Verification of Distributed
Transaction Management in a SOA Based Control System”, 2011 18th
IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, 206 - 215, 978-1-4577-0065-1, 27-29 April
2011.

[16] Anshu Veda, Kaushal Mittal, “Project Report One and Two Phase
Commit Protocols “, KReSIT IIT Bombay, 20/10/2004.

[17] Alexander Thomasian, “Distributed Optimistic Concurrency Control
Methods for High-Performance Transaction Processing”, IEEE
Transactions on Knowledge and Data Engineering, Vol.10, No. 1, ISSN:
1041-4347, 173 – 189, 06 August 2002.

[18] Khake Asha, Gojamgunde Ashwini, Shastri Ashlesha and Biradar Usha,
“Transaction Management in Distributed Database” BIOINFO
Transactions on Database Systems, Volume 1, Issue 1, pp-01-06, 2011.

[19] D. Skeen and M. Stonebraker, “A formal model of crash recovery in a
distributed system,” IEEE Trans. Software Eng., vol. 9, no. 3, pp.
219–228, 1983.

10

