
Abstract:

.

Keywords: Scrum, agile, framework, methodology, sprint,
backlog, scrum-master.

Distribution and estimation of effort remains a decisive
parameter in the success of every system engineering project. In
case, when the system being developed is a software, this
parameter becomes more critical as the number of factors to be
included becomes outsized. Due to this, the precision and
scheduling of effort estimation, heavily determines the failure or
success of the software development projects [1], [2]. To tackle this
challenge, various software development methodologies are
adopted time to time, specific to the needs and priorities of
software to be developed.

Scrum is the most successfully practiced flavor of Agile
development methodology in commercial software development,
academics and other industries of multiple spheres.

In spite of all the flexibility and uniqueness available in scrum,
effort distribution still remains a constant area of research. This
paper proposes an empirical approach of effort distribution in
scrum framework, based upon the number and expertise of team
members involved in the project. Our effort distribution criterion
distinctively prioritizes the number of tasks to be executed by
every member of a scrum team

Software effort estimation is a complex process that involves
familiarity of multiple parameters responsible for the output of
the whole software development project. Here effort estimation
can be considered as the calculation of approximate results
which are practically useful even if input data is inadequate or
uncertain. As the development cost involved for a software
project is directly proportional to the effort being involved,
scheduling and distribution of effort for a software product is
considered to be one of the most challenging and error–prone
assignments in software industry. Various algorithmic
approaches have been proposed from time to time as an optimal
solution for estimation of effort. These approaches range from
traditional waterfall [1] and spiral methodology [2] to
computation intensive COCOMO framework [3].

But the ever increasing development parameters in a software
project always demand a more flexible and dynamically
growing development methodology.

The latest and most popular answer to this demand has been the
Agile development methodology. Agile offers different
technical flavors of development methodologies such as

1. INTRODUCTION

 1
Saurabh Ranjan Srivastava Girdhari Singh2

,

Department of
1Swami Keshvanand Institute of Technology Management & Gramothan, Jaipur

2
Malviya National Institute of Technology, Jaipur

1 2Email- saurabh.ranjan.srivastava@gmail.com, girdharisingh@rediffmail.com

Computer Science and Engineering

Received 17 February 2016, received in revised form 6 March 2016, accepted 10 March 2016

Extreme Programming, KANBAN, Crystal and Scrum [4], [5]
suited to different scenarios as per user requirements. Among
all these flavors, scrum has been found to be most capable of
dynamically including the changing user requirements, system
parameters as well as the project team dynamics [6], [7].

In scrum, details of every module are collected and developed in
the form of user stories. These user stories are summarized to
reports known as product backlogs according to their
predefined priorities. During all this development, the
distribution of effort according to the responsibilities among the
team members can pay a crucial role in estimation of effort [7].

In this paper, we introduce a unique approach for effort
distribution, applicable in the initial stage of the scrum process.
This technique assumes some activities to be fixed in every
sprint of software development and distributes the remaining
ones as per the dynamic requirements of the project.

2. OVERVIEW OF SCRUM METHODOLOGY
FRAMEWORK

Scrum is a software project management framework from the
Agile family of system development methodologies. Scrum is a
simple but extremely efficient set of principles and practices
that guides teams in delivering marketable products in short
cycles with fast response. During this process Agile maintains
large space for continual enhancement and speedy adaptation to
changes in user requirements [6], [7].

Scrum can be used by anyone who has a complex project to
manage, whether developing a system software, a desktop
application, mobile app, e-commerce website or going to
maintain old projects. The main objective of Scrum is to deliver
the highest priority product backlogs in every sprint release [8].

The Scrum Process:

The Scrum process is composed of the following phases.

A Sprint Planning meeting is held with the development team,
management, and the Product Owner. The Product Owner
creates and prioritizes the Product Backlog and selects the
features to be included in the next 30-day increment (called a
Sprint) usually prioritized by highest business value and risk
involved. Finally a Sprint Goal is established which presents a
minimum, high-level success criteria for the Sprint and keeps
the Scrum Team focused on the ultimate targets of the projects.

SKIT RESEARCH JOURNAL VOLUME 6; ISSUE 1: 2016

1

Complexity Drop
Effort Distribution in Scrum Framework for GN – 1 G

GN – 1 G

iteration/Sprint, and reviewing the system with other
stakeholders at the end of the Sprint.

Scrum allows the possibility of one and only one Product
Owner who is responsible for the quality and value of the
project.

Scrum Master implements and reinforces the product iteration
targets, scrum values and practices [6]. He conducts the daily
scrum meeting and the sprint review demonstration, marks the
progress achieved, removes roadblocks in development, and
provides resources. The Scrum Master himself is a developer
and also participates in product development.

Scrum Development Team is the group of developers,
designers and other members of the project team who are
committed to achieving the sprint goal. Scrum development
team members have full authority to do all necessary actions to
achieve the sprint goals. The general size of a scrum
development team is seven, plus or minus two [6], [7], [8].

Scrum Artifacts:

Scrum teams are responsible for production of following 3
main artifacts, the Product Backlog, the Sprint Backlog, and the
Sprint Burndown chart. All of these are flexibly accessible and
purposely visible to the scrum team.

Product Backlog is an evolving, prioritized (ordered 1, 2, 3, ...)
file of customer-centric of business and technical
functionalities. The target of the scrum team remains to develop
the product backlog into a system while fixing the defects and
incorporating the upcoming changes. The Product Backlog
stores a unique identifier for each feature requirement, with
parameters such as category (feature, enhancement, defect), the
status, the priority, and the estimate for the feature. Generally
the product backlog is maintained in a spreadsheet like format
and is evolved over the lifetime of the product.

Sprint Backlog is the list of all business and technology
features, enhancements, and flaws scheduled to be covered for
the current iteration known as a Sprint.

The requirements taken from the product backlog are broken
down into tasks and maintained in the form of a short task
description, who originated the task, who owns the task, the
status and the number of hours remaining to complete the task.
The Sprint Backlog is updated each day by the scrum-master.

The development team figures out the tasks and resources
required to deliver those features. They also define a reasonable
number of features to be included in the next Sprint. Once this
set of features has been identified, no re-prioritization takes
place during the subsequent 30-day Sprint in which features are
designed, implemented and tested on daily basis [8].

15-minute short Scrum Meetings are held daily by the scrum
development team where tasks and blocks are written down.
Other people like product manager and managers may attend
the Scrum Meeting, but only the team members and the Scrum
Master can speak. Each team member answers the following
questions:

· What have you done since the last Scrum?

· What will you do between now and the next Scrum?

· What roadblock is preventing you from achieving
your target?

At the end of one sprint increment, a Sprint Review meeting
conducted by the Scrum-Master, takes place to review progress,
demonstrate features to the customer, management, users and
the Product Owner and review the project from a technical
perspective. The Product Owner and other interested
stakeholders attend the meeting. The latest version of the
product is demonstrated in which the functions, design,
strength, weaknesses, and trouble spots are shared with the
Product Owner [9], [10].

Instead of presentations, the major focus remains on
showcasing the finished product itself till date. The cycle is
repeated till the finish of the software development with a
Sprint Planning meeting taking place to decide the features for
the next Sprint.

Scrum Roles:

In Scrum framework, there are three possible roles for team
members namely Product Owner, Scrum Master and Scrum
Members [7], [8].

Product Owner is responsible for creating and refreshing a
prioritized list of project features known as the Product
Backlog, selecting what will be included in the next

SKIT RESEARCH JOURNAL VOLUME 6; ISSUE 1: 2016

Figure – 1: The Scrum Framework

Figure – 2: The 6-week sprints of scrum framework [9]

2

After setting apart these 2 activities that consume major time
and effort, we are left with designing, coding and deployment-
service activities to be scheduled.

For distinct prioritized effort distribution among these
activities, we implement the criterion where N is the
number of available team members.

By using this criterion, every team member can have at most
number of tasks without any clash of responsibilities.

Stating this mathematically we have the equation

Sprint Burndown chart is the document utilized to estimate
the eventual conclusion of an estimated backlog of work. The
main use of burndown charts is made to estimate the quantity
and quality of the work left.

It is also useful to estimate the number of hours remaining to
complete by mapping the sprint backlog features and
displaying them for the team.

3. SCRUM EFFORT DISTRIBUTION

The scrum Development Team is “cross-functional” in nature
which implies that it includes all the expertise necessary to
deliver the potentially deliverable product after each Sprint.
The scrum team is also a “self-organizing” or self-managing
body with a very high degree of autonomy and accountability.
The Team decides how many items (from the set offered by the
Product Owner) to build in a Sprint [9], [10], and how best to
accomplish that goal.

The special feature of a scrum team is that there are no fixed
specialist titles in a group that adopts Scrum; there is no
business analyst, no DBA, no architect, no team lead, no
interaction / UX designer, no programmer. They work together
during each Sprint in whatever way is appropriate to achieve the
goal they have set for themselves.

Since there are only team members, the Team is not only cross-
functional but also demonstrates multi-learning ability. Each
person certainly has special strengths, but also continues to
learn other specialties. Each person will have primary,
secondary and even tertiary skills, and is meant to “go to where
the work is”; individuals take on tasks in less familiar areas to
help complete an item. For example, a person whose primary
skill is interaction design could have a secondary skill in
automated testing; someone with primary skill in technical
writing might also help with analysis and programming.

4. PROPOSED SCHEME FOR EFFORT
DISTRIBUTION

Viewing this nature of scrum teams, here we propose an
empirical approach of effort distribution. This approach divides
the required effort of team members in a prioritized manner at
the outset of project initialization by pre-assuming some
factors.

In this approach we consider the whole software development
lifecycle to be composed of following major stages: Analysis,
Design (Architectural and Detailed), implementation (code
generation), testing (unit and integrated), deployment and
maintenance.

Now here we assume that analysis and testing are inherently
group practices that demand complete team effort. This implies
that whole team will go on for analysis before starting the
project. Similarly generation of test cases, unit and integrated
testing require efforts of complete team.

SKIT RESEARCH JOURNAL VOLUME 6; ISSUE 1: 2016

This equation represents the ceiling (maximum limit) of the
number of tasks to be allotted to an individual team member. A
sample distribution of efforts for a scrum team of 4 team
members is given in the table ahead for demonstration.

Team
Member-3

ARD

DTD

CDG

Team
Member-1

ARD

CDG

DS

Team
Member-2

DTD

CDG

DS

Team
Member-4

ARD

DTD

DS

Table – 1: Tentative Effort Distribution for a Scrum Team

Here following conventions have been used:

ARD = Architectural Design

DTD = Detailed Design

CDG = Code Generation

DS = Deployment Services

This table presents a tentative distribution of effort among
srcum team members without any clash of responsibilities.
Further, responsibilities can be specifically divided among
team members by dedicatedly tagging tasks relevant to their
expertise and / or interest given as follows.

ARD

DTD

CDG

DS

Architectural Designing (Modular Decomposition / UML

Diagrams / ERD Designing)

Detailed Designing (Algorithm Design / Logic Development /

UI Designing)

Source code generation (Login / Display Panel, Dashboard /

Database Connectivity / Reports)

Deployment-Services (Database Backup / Database

Migration / Report Generation / Reboot Initialization)

Table – 2: Possible Classifications for Tasks Assigned in Table 1

The usual size of a Team in Scrum is 7 ± 2 people [6], [8]. The
Team including people with skills in analysis, development,
testing, interface design, database design, architecture,

documentation, etc can appropriately accommodate

this criterion for effort distribution among team members.

GN – 1 G

GN – 1 G

GN – 1 G

3

SKIT RESEARCH JOURNAL VOLUME 6; ISSUE 1: 2016

Not Started

In Progress

Completed

Total Backlog

14-Jul

229

55

0

284

15-Jul

222

76

10

308

16-Jul

197

106

41

344

17-Jul

93

139

122

354

18-Jul

93

139

122

354

21-Jul

93

139

122

354

22-Jul

93

139

122

354

23-Jul

93

139

122

354

24-Jul

93

139

122

354

25-Jul

93

139

122

354

Not Started

In Progress

Completed

Total Backlog

14-Jul

229

55

0

284

15-Jul

222

76

10

308

16-Jul

197

106

41

344

17-Jul

93

139

122

354

18-Jul

93

115

146

354

21-Jul

93

113

148

354

22-Jul

93

108

153

354

23-Jul

93

107

154

354

24-Jul

93

97

164

354

25-Jul

93

90

171

354

Table-3: Backlog Coverage for a 2 week sprint by standard scrum

Figure – 3: Effort Distribution and Backlog Coverage in Standard vs [N-1] Schemes for Scrum

5. COMPARISONS OF THE 2 SCHEMES

Figure 4: Complexity / Success Graph for Usual Effort Distribution in
Scrum Framework

Figure 5: Complexity / Success Graph for (N-1) Effort Distribution
in Scrum Framework

 Table-4: Backlog Coverage for a 2 week sprint by scrumGN – 1 G

4

As already discussed, scrum framework consumes 7 ± 2
persons as team members. To demonstrate the contrast of our
scheme, here we discuss an example of backlog coverage for a 2
week sprint. Table – 3 contains the task coverage data of the
standard scrum practice, while table – 4 has the similar data for
the proposed scheme in scrum framework.

Now as shown in Table – 3 and Table – 4, the tasks not started
were 229 and tasks in progress were 55. After 3 more days of
progress, these numbers settled to 93 and 139 in both schemes.
Where the standard scrum carried on with these numbers till the
end of the sprint, the scheme showed a constant
coverage of tasks and their transfer to the burndown list. This
continuous coverage of tasks, also known as the velocity, is
crucial for the success of the project in long term.

As the sprints proceed with time, this scheme can save
considerable amount of effort and time of the scrum
development team.

In turn, a wide gap between the empirical success rate and the
defined success rate can be expected at the end of the sprint. As
the velocity of the sprint is saved from slowing down, the
coverage of tasks will not be at a threshold edge.

At the end of the sprint, in the sprint reviews meeting the Scrum
Team and the Scrum Master together can work on to maintain
and update the velocity of the scrum process. For this they can
work upon following questions, what went well during the
sprint, what didn't, and what improvements could be made in
the next sprint, and so on.

The comparison of estimated effort distribution in a scrum team
is given in Figure-3 and Figure-4. The immediate cutoff of
complexity in Figure-4 represents the implication of the N – 1
criterion during analysis and testing phases. Hence the overall
complexity graph can be expected to remain same for each
upcoming sprint as whole team will resolve analysis and testing
complexities at the outset.

6. COMPARISON & FUTURE WORK

As we have already discussed, a scrum development team is a
group of project team members working in multiple sprints.
Now if the jobs to be fetched up by the members of the scrum
development team are according to their caliber and also
provide them a chance to expand their skillset, then a significant
drop in the struggle of task allocation can be observed in the
productivity of the existing Scrum framework.

Figure-3 represents the usual allocation of jobs among the
scrum development team such as analysis, design, coding,

testing, deployment and maintenance, etc. The success
probability of the sprint decreases by the rise in complexity. But
we can expect an empirical reduction in the success probability
drop for the effort distribution scheme for a general
scrum development team of 7 ± 2 members.

The major cause for this drop is the pre-allocation of duties
regarding effort distribution. This pre-allocation relative to
Table-1 and Table-2 will not reduce the clash of responsibilities
among the scrum team, but also facilitate collaboration at
various levels. This will be eventually improve utilization of
manpower as well as give chances to team members to expand
their skillset.

criterion for a scrum team larger than the size of 7 ± 2 members
and more deeper level of software project tasks. The prime
focus of the future research will be to empirically quantify the
allocation of effort distribution and minimize the team size for
commercial software environments.

REFERENCES

[1] Bassil Youssef; A Simulation Model for the Waterfall Software
Development Life Cycle; 2012; International Journal of Engineering &
Technology (iJET) , ISSN: 2049-3444, Volume 2 , Issue 5,2012; May
2012

[2] Boehm Barry; A Spiral Model for Software Development and
Enhancement; 1988; Computer – ACM Digital Library; Volume 21,
Issue 5; Page 61-72, May 1988

[3] Boehm Barry, Clark Bradford, Horowitz Ellis, Westland Chris,
Madachy Ray, Selby Richard; Cost models for future software life
cycle processes: COCOMO 2.0; 1995; Annals of Software
Engineering; December 1995; Volume 1, Issue 1, Page 57-94

[4] Boehm Barry; Get Ready for Agile Methods, with Care; 2002; IEEE
Computer, Volume 35, Issue 1, Jan 2002, Page 64-69

[5] Fowler Martin, Highsmith Jim; The Agile Manifesto; August 2001;
h t t p : / / a n d r e y . h r i s t o v . c o m / f h t -
stuttgart/The_Agile_Manifesto_SDMagazine.pdf; 2001.

[6] Greening Daniel R.; Enterprise Scrum: Scaling Scrum to the
Executive Level; 2010; 43rd Hawaii International Conference on
System Sciences (HICSS); 5-8 January 2010; Honolulu; ISSN 1530-
1605; Page 1 - 10

[7] Schwaber Ken, Beedle Mike; Agile Software Development with
Scrum; Prentice Hall, 2001; Page 89-94

[8] Cockburn Alistair; What the Agile Toolbox Contains; 2004; CrossTalk
Magazine - The Journal of Defence Software Engineering; November
2004; Pages 4 -7

[9] Heys Bill; Branching for Scrum; 2011; MSDN Blogs;
http://blogs.msdn.com/b/billheys/archive/2011/01/18/branching-for-
scrum.aspx; 18 Jan 2011

[10] Asproni Giovanni; An Introduction to Scrum; 2006; Software
Developer's Journal; giovanniasproni.com; June 2006

SKIT RESEARCH JOURNAL VOLUME 6; ISSUE 1: 2016

GN – 1 G

GN – 1 G

GN – 1 G

GN – 1 G

In future, we expect to improve the precision of this

5

