
Abstract: This paper presents the concept of cognitive maps as an 
effective means of modeling physical systems as well as conceptual 
frameworks. The basic structure of cognitive maps is discussed by 
detailing the role of each of its basic constructs. System simulation 
using cognitive maps is also briefly discussed. Advanced variants 
as well as advancements pertaining to cognitive map modeling 
proposed by researchers over the past two decades are reviewed. A 
brief discussion on application areas of cognitive maps and its 
variants is also included. Looking at the increasing trend of 
applications of cognitive map modeling in the past two decades, it 
can be concluded that there is good potential in cognitive maps to 
play an important part in the developing arenas of artificial 

intelligence and soft computing.

1. INTRODUCTION

Cognitive maps were introduced by the political scientist 
Robert Axelrod [1] in 1976 as a means of modeling decision 
making scenarios in social and political systems [2]. A 
cognitive map is essentially a signed digraph consisting of 
nodes (representing concept variables) and directed arcs 
(representing causal relationships). In its simplest form as 
introduced by Axelrod, it consists of concept variables 
interconnected with causal arcs labeled with either a “+” or “-” 
sign. Figure 1 shows an example of such a cognitive map which 
models the relationship between working conditions in a 
factory and the profits accrued.
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is of not much use in modeling real world scenarios. Moreover, 
due to lack of any form of quantification, it is difficult to derive 
any useful inference. 

The topology of cognitive maps was completely revolutionized 
by the introduction of fuzzy cognitive maps (FCMs) in 1986 by 
Bart Kosko [3]. Since then many variants of FCMs have been 
advocated for numerous applications in science and 
engineering too besides their originating domain of social 
sciences. The major developments that have taken place in the 
field of cognitive maps since their introduction are reviewed 
next.

2. FUZZY COGNITIVE MAPS

The first appearance of an appropriate quantification in 
cognitive maps was through Kosko's fuzzy cognitive maps. 
Apart from having a “+” or “-” sign showing the type of 
causality, the arcs in Kosko's FCMs also carry weights (usually 
in the interval [0, 1]) expressing the strength of causality. A 
numerical quantity is associated with each node in an FCM, 
representing the state/level of that node. Interestingly, quite 
contrary to what the term 'Fuzzy', in the name 'Fuzzy cognitive 
map' suggests, an FCM has no relation with fuzziness or fuzzy 
logic in the traditional sense. 

An FCM is simulated in discrete/continuous time (as the case 
may be), during which the weights on the arcs remain constant, 
but the concept values change. During simulation, the updated 
value of any given concept is evaluated by passing the weighted 
sum of all concept values that are input to the given concept 
node, through an appropriate threshold function. For more 
clarity, let us take an example of a concept node (of a discrete 
time FCM) with value         at time step t with n number of input 
nodes having values      (where i = 1 to n). Let   be the 
respective weights on the arcs. Then at the end of time step t, the 

thupdated value of the j  node will be given by equation (1).Fig. 1. Example of a simple cognitive map

A “+” sign on an arc connecting two concepts implies that an 
increase or decrease in the antecedent concept leads to an 
increase or decrease respectively in the consequent variable. 
While on the other hand, a “-” sign implies that an increase or 
decrease in the antecedent concept leads to a decrease or 
increase respectively in the consequent concept. However, due 
to the simplistic nature of the type of cognitive map mentioned 
above, apart from giving a graphic representation of causality, it 

Here, T is an appropriate threshold function. The purpose of a 
threshold function is to constrain the values of concept nodes 
within a certain interval (usually [0, 1], or [-1, +1]). Equation 1 
represents the traditional node updating process in FCMs. 
Stylios et al. [4] use a modified node updating process for 
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cognitive maps in modeling systems. This modification, as 
given in equation (2) updates each node by including their 
previous value too.

In the above equations, λ is a constant parameter that 
determines the slope or steepness of the threshold function.

Final inference in fuzzy cognitive maps

Once a cognitive map model of a system is made, its simulation 
is done by triggering the map with an initial set of values of all 
the nodes contained within it. This trigger updates the values of 
the nodes. The final inference is obtained after conducting 
multiple iterations with subsequent triggers using updated 
nodal values. 

The inference procedure of a cognitive map is the methodology 
or algorithm applied to it in order to derive a meaningful 
inference through simulation. The inference procedure details 
out, or in other words, sets the rules of interaction among the 
nodes and arcs. However, the final inference for fuzzy cognitive 
maps is obtained in the form of one of the following conditions:  

(i) A Unique Solution: This is a condition where the states of 
all concept variables remain unchanged for successive 
iterations. In the absence of any feedback loop in the 
cognitive map, the simulation terminates after the first 
iteration. In such cases the cognitive map is said to be 
trivial. 

(ii) A Limit Cycle: In this condition, a particular set of concept 
states' configuration keeps on repeating indefinitely with 
successive iterations.

(iii) Chaos: In this condition, the iterations will go on 
indefinitely, giving neither a final terminating solution nor 
any repeating configuration of concept states. The 
subsequent result of iterations is always a different set of 
values for the concepts.

Limitations of fuzzy cognitive maps

In 1999, Carvalho and Tomé [5] brought to light, a significant 
shortcoming of FCMs in the fact that the relations in FCMs are 
monotonous in nature. This however is not the case in most of 
the real world applications. Further, they also comment on the 
inability of traditional FCMs in modeling the dynamics of 
complex qualitative systems.

FCMs have always been considered to have close similarities 
with artificial neural networks. However, one major difference 
among them is in the number of arcs connecting nodes with 
each other; which is typically much higher in the case of neural 
networks. This fact brings to light one of the main shortcomings 
of FCMs. According to Khor [6], while a small amount of error 
that may happen to be introduced in one or a few arcs of the 
neural net is compensated by the other arcs; such errors are 
usually retained in the case of FCMs owing to the fewer number 
of arcs available for compensation. Further, Carvalho and Tomé 
[7] opine that this problem is aggravated if feedback loops are 
also present in FCMs.

Another common problem with FCMs is associated with the 
use of continuous threshold functions. It is observed from 
equations 6 and 7 that the steepness/gradient of the threshold 
functions is governed by the parameter λ. There is much 
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Hence, FCMs using equation 2 for updating nodes have one 
time step memory capability.

FCM simulation can also be shown using simple matrix 
multiplications as given by equation 3.

Here,  is a 1 × n  matrix containing the node values 
       at any given time step t; E  is an n × n  matrix (called the 
adjacency or connection matrix) that contains all the weights 
stored in the arcs of a cognitive map having n number of nodes; 
and T is the threshold operation on matrices.  

FCMs that were initially in common use were either bivalent or 
trivalent in nature. An FCM is called bivalent if the concept 
nodes take values from the set {0, 1}, and trivalent if concepts 
take values from the set {-1, 0, +1}. The type of values taken by 
concepts in an FCM is dictated by the threshold function used. 
Equations (4) and (5) give the threshold functions that result in 
the formation of bivalent and trivalent FCMs respectively.

Bivalent and trivalent FCMs have the limitation that they can be 
used to represent an increase or decrease in concept values (also 
a stable or neutral condition in the case of trivalent FCMs). 
They cannot represent the degree of an increase or decrease that 
has occurred. For a more realistic representation of real world 
applications involving non-linearity, the more recent, 
continuous FCMs are better. These FCMs make use of 
continuous non-linear transformation/threshold functions, thus 
enabling the concepts to take values from a real interval 
(usually [0, 1] or [-1, +1]). Most commonly used among these 
are the sigmoid (logistic) and tanh (hyperbolic tangent) 
threshold functions which are given in equations 6 and 7 
respectively.
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ambiguity in the choice of this parameter. This limitation of 
FCMs that totally different results (simulations) are possible by 
using different values of λ was sufficiently demonstrated by 
Khor [6] using several examples.

Another shortcoming of most FCM variants is their inability to 
deal with complex AND/OR relationships that may exist 
among nodes.

Advanced variants of fuzzy cognitive maps

Enough research effort has been expended by various 
researchers towards improving the inference capabilities of 
FCMs. For example, in order to overcome the shortcoming of 
monotonous relations in FCMs, Hagiwara [8] proposed the use 
of non-linear arcs. In the same work, an improvement in the 
inference procedure of FCMs is also proposed in the form of 
time delay arcs. The use of time delay in arcs compensates for 
the fact that in real world applications, there is a time delay 
before the effect of an antecedent node is materialized in a 
consequent node. In order to improve the qualitative modeling 
capabilities of FCMs, Carvalho and Tomé [5] proposed rule-
based FCMs (RBFCMs). RBFCMs use an inference procedure 
that is in an actual sense based on fuzzy theory. In continuation 
of their work, Carvalho and Tomé [9] elaborate cognitive map 
concepts as fuzzy variables defined by fuzzy membership 
functions and the relations (arcs) with fuzzy rule bases. 
RBFCMs employ single antecedent fuzzy rules in the rule bases 
that are stored in the arcs. For any given node, the concept state 
at the end of a time step is evaluated by aggregating the fuzzy 
inference outputs of all the nodes antecedent to it using a 
mechanism called 'Fuzzy carry accumulation'. When the 
concept value exceeds a certain maximum limit (usually 1), an 
'overflow' occurs, which is carried over to the next point in the 
universe of discourse. However, Khor [6] opines that there are 
certain limitations and shortcomings with RBFCMs which 
limit their application to modeling simple problems only. For 
example, Carvalho and Tomé [5] themselves admit that under 
certain conditions RBFCMs (developed by them) do not allow 
the use of singleton (crisp) inputs. Moreover, RBFCMs do not 
provide a basis for supporting multi-antecedent rules. 

Khor [6] proposed the fuzzy knowledge map (FKM) as another 
variant of rule based FCMs. FKMs also use the same modeling 
constructs as the RBFCMs with fuzzy variables as concepts and 
single antecedent rule bases populating the arcs. The 
justification given for the use of single antecedent fuzzy rule 
bases is that it reduces problem complexity and eliminates the 
rule explosion problem generally observed in multi-antecedent 
rule bases. However, the main drawback with this approach lies 
in the fact that the algorithm that implements the approach 
requires specific quantitative data related with the variables 
involved, which might not be available always. Moreover, 
simple common sense reasoning that goes hand in hand with 
most qualitative assessments cannot be performed using Khor's 
algorithm. On the contrary, it is interesting to note that this type 

of reasoning can be performed quite easily using the traditional 
multi-antecedent rule bases.

Augustine et al. [10] modified the basic constructs of cognitive 
maps to introduce a new modeling framework for failure 
analysis of physical systems namely “Rate cognitive maps”. 
The proposed cognitive map based framework provides a 
robust approach for identifying a large variety of possible 
failure modes in a dynamic environment through a new 
cognitive inference process. While this methodology allows the 
identification of possible failure modes at multiple levels of 
abstraction, the network like representation of physical systems 
makes it easier to track the root causes of identified failure 
modes. The authors successfully demonstrated the capability of 
rate cognitive maps in predicting possible future failure modes 
of physical systems using mainly the structural models as input. 
The cognitive map model of a water heater was simulated for a 
five year run. The output was a listing of all possible failure 
modes along with their timestamps in the projected five years. 
Rate cognitive maps thus hold good potential in modeling and 
simulation of mechanical systems for the purpose of design-
stage failure modes and effects analysis. 

In recent years, many new variants have been proposed by 
various researchers. These variants have been propelled by the 
need to make cognitive maps more and more intuitive and 
adaptable to newer requirements in the field of modeling and 
simulation. Prominent research that has been done in this 
direction since the year 2010 is as follows:

Fuzzy Grey Cognitive Map was proposed by Salmeron [11] to 
deal with unstructured data occurring due to uncertainty. Their 
model can be considered as a generalization of the standard 
FCM obtained by the use of Grey numbers. Cai et al. [12] 
introduced Evolutionary Fuzzy Cognitive Maps. With their 
model, they demonstrated capability of modeling dynamic and 
complex causal relations. This capability was achieved by 
allowing the variable states to evolve in real time on the basis of 
external assignments and causalities. Expert knowledge is 
always required in some form or the other in order to construct a 
cognitive map of a system or a scenario in any domain. The 
variant of FCM developed by Iakovidis and Papageorgiou [13], 
which they named as Intuitionistic FCM, enables capturing the 
essence of an experts' opinion or decision rather intuitively, 
when there is hesitation in decision-making by the expert. This 
was achieved by using a combination of reasoning along with 
intuitionistic fuzzy sets. Ruan et al. [14] introduced belief-
degree-distributed fuzzy cognitive maps. They used belief 
structures to facilitate assignment of linguistic terms to nodal 
relationships in FCM. Rough set theory was used by Chunying 
et al. [15] to develop a variant of FCM called as Rough 
Cognitive Map. This variant was developed specifically to 
target the problems involved in dealing with the diversity of 
relations that sometimes exist among concept nodes.
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3. APPLICATIONS OF COGNITIVE MAPS

Owing to the capability of cognitive maps in modeling 
causality, both quantitatively as well as qualitatively, they have 
found applications in diverse fields of research. Papageorgiou 
and Salmeron [16] identify numerous application areas in their 
survey work. Prominent among these areas include social 
sciences, political sciences, expert systems, medicine, 
education, prediction, environmental sciences, engineering, 
robotics, information technology etc. 

Aguilar [17] was the first researcher to compile a detailed 
review of FCM applications till the year 2004. Another review 
work of FCM applications worth mentioning was done by 
Papageorgiou [18]. 

After the year 2010, research using FCM has continued and has 
spread to even more areas of science and engineering. Some of 
the notable efforts include applications in the following areas: 
classification and Prediction [19], solar Energy [20], medical 
decision making [13], autonomous navigation systems [21], 
artificial emotions forecasting [22], enterprise resource 
planning [23], security risk assessment [24], water demand 
prediction [25], intelligent security systems [26], pattern 
recognition [27], Environmental Assessment [28].

4. CONCLUSION

Since its inception in 1976, the cognitive map of Axelrod has 
evolved and has found a plethora of applications in systems' 
modeling and simulation. The ease with which cognitive maps 
gained popularity and found acceptance in scientific circles can 
mostly be attributed to the inherent capability of their 
architecture in handling qualitative as well as quantitative data 
effectively. 

This paper discussed the basic inference procedures used in a 
cognitive map and its more dominant successor, the fuzzy 
cognitive map. A brief discussion was included on the currently 
prevalent variants of FCMs. Finally, some light was thrown on 
the application areas of cognitive maps and its variants. 

Although cognitive maps are increasingly becoming popular 
for modeling real world scenarios, it is surprising that very little 
effort has been expended towards incorporating the 
probabilistic nature of causal interactions in the cognitive map 
inference mechanism. In this regard, development of cognitive 
map variants with stochastic inference capabilities seems 
promising from the perspective of future research in this field.

Nevertheless, looking at the steep trend of increase in its 
applications in the past two decades, cognitive maps can be 
expected to play a major role in the emerging paradigm of 
artificial intelligence and soft computing.

52



SKIT RESEARCH JOURNAL           VOLUME 6; ISSUE 1: 2016

 [19] H. J. Song, C. Y. Miao, R. Wuyts, Z. Q. Shen, M. D'Hondt, and F. 
Catthoor, “An Extension to Fuzzy Cognitive Maps for Classification and 
Prediction”, IEEE Trans. on Fuzzy Systems, Vol. 19, No. 1, pp. 116-135, 
2011

 [20] A. Jetter, and W. Schweinfort, “Building scenarios with Fuzzy Cognitive 
Maps: An exploratory study of solar energy”, Futures, Vol. 43, No. 1, pp. 
52-66, 2011. 

 [21] M. Mendonça, L. V. Ramos de Arruda, and F. Neves Jr., “Autonomous 
navigation system using Event Driven-Fuzzy Cognitive Maps”, Applied 
Intelligence, Vol. 37, No. 2, pp. 175-188, 2012. 

 [22] J. L. Salmeron, “Fuzzy cognitive maps for artificial emotions 
forecasting”, Applied Soft Computing, Vol. 12, No. 12, pp. 3704-3710, 
2012. 

[23] J. L. Salmeron, and C. Lopez, “Forecasting Risk Impact on ERP 
Maintenance with Augmented Fuzzy Cognitive Maps”, IEEE 
Transactions on Software Engineering, Vol. 38, No. 2, pp. 439-452, 
2012. 

 [24] P. Szwed, and P. Skrzyński, “A new lightweight method for security risk 
assessment based on fuzzy cognitive maps”, International Journal of 
Applied Mathematics and Computer Science, Vol. 24, No. 1, pp. 213-
225, 2014. 

 [25] E. I. Papageorgiou, K. Poczeta, and C. Laspidou, “Application of Fuzzy 
Cognitive Maps to water demand prediction”, IEEE International 
Conference on Fuzzy Systems, pp. 1-8, 2015. 

 [26] J. L. Salmeron, “A Fuzzy Grey Cognitive Maps-based intelligent 
security system”, IEEE International Conference on Grey Systems and 
Intelligent services, pp. 29-32, 2015. 

 [27] G. A. Papakostas, E. I. Papageorgiou, and V. G. Kaburlasos, “Linguistic 
Fuzzy Cognitive Map (LFCM) for pattern recognition”, IEEE 
International Conference on Fuzzy Systems, pp. 1-7, 2015. 

 [28] A. Mourhir, T. Rachidi, E. I. Papageorgiou, M. Karim, and F. S. Alaoui, 
“A cognitive map framework to support integrated environmental 
assessment”, Vol. 77, pp. 81-94, 2016.

53


