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Abstract: The aim of the present paper is to study and develop the
multiple Wright-Erdelyi-Kober fractional integrals of H-function
associated with Srivastava polynomials. Special cases, involving
Multi-index Mittag-Leffer functions, Jacobi polynomials are
considered. On account of the general nature of the functions
involved, a large number of new integrals follow as special cases of
the main finding.
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1. INTRODUCTION

Charles Fox [ 1] introduced function which is well-known in the
literature as Fox's H-function or simply the H-function. This
function has been defined and represented by means of the
following Mellin-Barnes type contour integral [2]:
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Here m, n, p and ¢ are non-negative integers
satisfying 0 <n <p, 1<m<q. Also «a,(j=L,...,p)
and f ; (j=1,...,q) are assumed to be positive quantities for

standardization ~ purpose. Also @, (j=L...,p) and
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The Srivastava polynomials [3] is given by:
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where M is an arbitrary positive integer and the coefficients

Ay (N,k=0) are arbitrary constants, real or complex.

Here ( A, denotes the Pochhammer symbol defined by
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Let m>1 be an integer;
0.20,7,€R, B >0,i=12,..,m. We consider O, as

multiorder of fractional integral; y;as multi-weight; ﬂl as
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additional parameter then multiple Wright-Erdelyi- Kober
integral [4, 5] is defined by
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almost all the fractional calculus operators and most of their
generalization fall in the generalized fractional calculus as
special cases by taking multiplicies m = 1,2,... and special
parameters.

The following lemma [4] will be required to establish our main
result:

Lemma: For
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Proof:

To establish integral (2.1) we first express H-function in terms
of Mellin-Barnes integral (1.1) and the Srivastava polynomials
using (1.3). By interchanging the order of integration and
summation and then using the lemma (1.5), we arrive at the
desired result after little simplifications.

3. SPECIAL CASES
(1) On Setting
M=N=P=10=r+1a4,=0,0,=1,b,=0,5 =1
b =1-p,B, =1/p, ;i=2,.r+1 then
the main result takes the form
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which is valid under the conditions surrounding (2.1)

Where E[ . (Z ) are the Multi-index Mittag-Leffler
()
,)

functions [6].
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valid under the conditions surrounding (2.1).

where ijl“,’ﬁ') (y) is the Jacobi polynomials [7].
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4. CONCLUSION

The obtained result, besides being of very general character,
have been put in a compact form and thus making it useful in
applications. The present result provides interesting unification
and extensions of a number of new results.
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