
Abstract: Decimal data processing applications have grown at a
very fast rate in recent years. The IEEE 754-2008 standard for
floating point arithmetic has already dictated the importance of
decimal arithmetic. In Computer Science where the demand of
accurate data processing is highly required, decimal arithmetic
plays an important role to support the most accurate data
processing at the level of financial and scientific calculations where
errors aren't bearable. In most hardware approaches that have
been proposed for decimal arithmetic, the implementation is very
expensive in terms of occupied resources and path delay. So, in this
paper we have proposed Vedic BCD multiplier using the Vedic
mathematics. The analyzed synthesized results will clearly explain
the performance of Vedic BCD multiplier as compared to
previously proposed BCD multipliers.

Keywords: Vedic Mathematics, Urdhva-Triyakbhyam, Vedic BCD
digit multiplier, Vedic binary Multiplier, Nikhilam.

1. INTRODUCTION

Decimal multiplication is very frequently used operation in
many decimal applications. IEEE–754 standard for floating
point arithmetic already incorporates specifications for decimal
arithmetic. Thus, it is expected that microprocessor
manufacturers include decimal floating–point units in their
products oriented to mainframe servers to satisfy the high
performance demands of current financial, commercial,
banking calculation, currency conversion, insurance, telephone
billing, accounting, scientific, tax calculation and
user–oriented applications where we cannot tolerate errors. In
many databases, numbers are in decimal format. Since many
decimal numbers cannot be represented exactly as binary
numbers with a finite number of bits, arithmetic operations
must be done directly over decimal numbers [1-3].

To avoid errors associated with decimal to binary conversion
decimal operations use software algorithms based on binary
arithmetic. However, software solutions are very slow.
Typically, three or four orders of slower magnitude than binary
arithmetic are implemented in hardware [4]. Since decimal
applications are increasingly more computationally
demanding, it is important to implement decimal operations in
hardware. The implementation process of BCD multiplication
is more complicated than binary multiplication due to the
inherent difficulty to represent decimal numbers using binary
number system.

Recently, many hardware approaches have been proposed for

parallel decimal multiplier, but typically all of them are very

Performance analysis of BCD Multipliers with
Vedic BCD Multiplier

Arvind Kumar Mehta, Vipin Jain
Computer Science and Engineering

mehta.hkc@gmail.com, vipin@skit.ac.in

Department of
Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur

Email-

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 2: 2014

complex, occupying more slices and LUTs (4-input look-up

tables) leading to more power and less speed when

implemented in hardware. Hence, the major consideration

while implementing decimal arithmetic is to enhance its speed

and reduce slices as much as possible.

The multiplication process is major consideration to design

BCD multiplier. So we are considering this fact, a high speed

modified Vedic multiplication process [5] has been proposed in

this paper, which is more efficient for hardware design.

In a very high speed area efficient Vedic BCD multiplier has

been proposed for VLSI applications by using Nikhilam sutra,

but when both operands' digits are far from their base then it will

not be useful because it doesn't reduce digits from operands.

Section 2 describes Vedic sutras and Vertical-cross method, an

implementation of Vedic BCD multiplier. Section 3 describes

binary multiplier and binary to BCD converter. Section 4

describes designing of single-digit and multi-digit BCD

multiplier. Section 5 presents our synthesis results and the last,

Section 6 is conclusion and future works.

2. VEDIC SUTRAS AND VERTICAL-CROSS METHOD

Vedic mathematics is an ancient mathematics which is based

upon 16 Vedic sutras and 14 sub-sutras, which are being applied

on various streams of mathematics to make calculations easier,

faster, efficient and highly optimized. Out of 16 there are

mainly 3 sutras and 2 sub-sutras are given for multiplication,

they are shown in table I.

Table 1: Vedic Multiplication Sutras Along With Their Brief Meaning

1

2

3

4

5

Urdhva-tiryakbhyam

NikhilamNavatashcaramamDashatah

Anurupyena

EkanyunenaPurvena

Antyayordasake'pi

–Vertically and crosswise.

–All from 9 and last from 10

–Proportionality

–By one less than the previous one.

–Last totaling to ten

Sutras

A. Various Vedic multiplication sutras

Nikhilam is not a universal method for decimal numbers
because at least one operand has to be in the near power of 10.
Anurupyena, which gives solution to this problem, is again not
a good choice as it requires multiplication or division
Ekanyunena Purvena and Antyayordasake'pi are astronomic

18

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 2: 2014

application specific sutras. But, Urdhva-Tiryagbhyam is
universally adopted method to all the cases of multiplications,
so it is chosen for BCD multiplication.

B. Multiplication process using Vertical-Cross Method

Fig. 1 is illustrating 2x2 digit multiplication using vertical-cross
method.

Step 1: Multiply the numbers in the one's place and put the
product directly under the one's.(4 *9)

Step 2: Cross multiply, we would form fractions by taking the
top number's tens digit multiplied by the bottom
number's ones place. Then take the top number's tens
place multiplied by the bottom number's tens place. Add
both products. (4*2+1*9)

Step 3: Multiply again, the numbers in the tens place and place
the answer to the left of the previous step's answer.(2*1)

Step 4: Add all the partial products with previous step's carry if
it is.

Multiplication of 4x4 BCD numbers using Urdhva-
tiryakbhyam by applying divides and conquers approach;
shown in fig. 2.

Fig 1: Vertical and cross product

Fig 2: Urdhva-Triyakbhyam and divide and conquers approach

Here A1-A4 and B1-B4 are 4 digit BCD number and
multiplication took place using 2x2 digit multiplier blocks.
Only four port map statements are required for partial
multiplication process.

C. Vedic Binary Multiplier

Each single decimal digit can be represented by a unique 4-bit
pattern; they are as follows in table II. If we want to implement
single digit multiplier then we have to implement 4x4 binary bit
multiplier and it gives us only 7 bit output to express BCD
multiplication. A little modification is required in [6]'s
architecture between adders of partial products to implement
binary multiplier for decimal multiplier as shown in fig. 3

3. BINARY TO BCD CONVERTER

Decimal multiplication in particular has been manipulated in
many ways. For example, one way for decimal multiplication is
to perform the multiplication directly in decimal. Another
approach is to convert the operands to binary, perform the
multiplication in binary, and then convert the result back to
decimal.

A third approach for decimal multiplication involves
performing decimal digit-by-digit multiplication in binary and
then converting the resulting binary partial product to decimal
[7]. So the binary to BCD conversion is most important part of
the decimal multiplication.

Table 2: Decimal Digits Are In 4-bit Binary Pattern

Fig 3: VHDL Implementation of 4-Bit Vedic Binary Multiplier for BCD-8421

19

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 2: 2014

A. Literature Survey

Several algorithms had been already proposed by [7-9] for
binary to decimal conversion, which improves speed, delay,
power consumption and area of chip. [8] Has proposed a highly
efficient algorithms, but it gives wrong outputs to some decimal
values as shown in table 3 [7] has also proposed an optimized
version of [8] architecture by using logical equations and
optimized DL block, but it is also giving wrong outputs of the
following values (50, 56) as shown in table 3. These errors are
occurring because the proposed algorithm isn't correct for some
special cases and there are some architecture level faults too. In
the next section we are giving explanation of the above errors
and give proper improvement in proposed algorithm and
architecture of [7-8].

B. Errors And Improvements

There is an error in [8] proposed algorithm as shown in fig.
4—when we give 56 as an input, step-2 gives carry2=1 and final
LSB is became 0000 so no correction took place but actual
number through second addition was “10000” (16) and it is
greater than 9. So a correction has to be implemented in this
algorithm—if (no>9 or carry2==1) then add 6. There is also an
architecture level fault in [6] shown in fig. 5. when we are
giving 46 as an input then carry c1=1 and HSB t3t2t1t0 is 0011
and according to this architecture 2-bit one adder from HSB
side can't give correct output due to the carry generated by this
adder isn't added into next t3 bit. A logical OR gate is require to
resolve this problem. In [7] proposed DL optimizer and logical
equations in four-three algorithm are giving wrong output,
when we give (56, 50) as an input. Reason is same carry2=1 and
final LSB is “0000”, as show in fig. 4. So, these errors from
carry generation equations and in the resulting block named
“optimized correction block” are due to incorrect conversion
algorithm. So these little modifications are required to
eliminate above errors and it will give proper output in all cases
of BCD number system. Implementation of this modified
algorithm is shown in fig. 6

Table 3: The Illustration Of Some Wrong Outputs Of [7,8]'s Algorithms
And Architectures

56 "0111000" "0101" "0000" "0101" "0110"

57 "0111001" "0101" "0001" "0101" "0111"

Remark

46 "0101110" "0000" "0110" "0100" "0110"

Remark

56 "0111000" "0101" "0000" "0101" "0110"

50 "0110010" "0100" "1010" "0101" "0000"

Carry
problem

Decimal

Number
Binary

from [8] algo Correct
Remark

2-bit Adder

problem

Decimal

Number
Binary

from [7]'s 4-3algo's
logical eq.

Correct

Decimal

Number
Binary

from [8]'s
Architecture

Correct

 logical
equations and
DL optimizer

problem

DH DL DH DL

DH DL DH DL

DH DL DH DL

Fig 4: Wrong output from [7,8]'s proposed architecture

Fig 5: Wrong output from [8]'s proposed architecture

Fig 6: Corrected Implementation (VHDL) of 7-bit binary to BCD converter

4. PROPOSED VEDIC BCD MULTIPLIER

There are several ways to implement decimal multiplier: one
way is to perform the multiplication directly in decimal, another
approach is to convert the operands into binary; then perform
the binary multiplication and lastly convert the result back to

20

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 2: 2014

decimal. A third approach to decimal multiplication involves
performing decimal digit-by-digit multiplication in binary and
then converting the resulting binary partial product to decimal.
These partial products are added as appropriate to form the final
decimal product [9]. To reduce the circuitry overhead and easier
implementation; we are using modified third approach, in
which N decimal digits (N is even) are divided into equal parts;
then apply Vedic urdhva-triyakbhyam multiplication. After
this, decimal adders are used to get the final output digits; as
shown in fig. 7, 8. List of BCD adders for implementation
purpose are 4by4, 4by2, 4by3 and 2by2 etc. which reduce slices
and speed up overall multiplication process. Architecture of
2x2 and 4x4 BCD digits multiplication is shown in fig. 9, 10.
These architectures are depicting that if we want to design 2x2
digits multiplier we can use 1x1 multipliers and the Vedic
multiplication process is same as mentioned in the section 1. Its
implementation is shown in fig. 11. The 4x4 digits multiplier
can be implemented easily by using 2x2 digits multipliers, in
this way NxN can also be implemented. In the next section
results will depict that how these proposed Vedic BCD
multiplier are much better than previously implemented
multiplier in term of speed and hardware resources.

5. SYNTHESIZED RESULTS

All the proposed optimized architectures are successfully
implemented in VHDL as shown in fig. 3, 6, 8, 11 and
synthesized using Xillinx-ISE8.1 for virtex-4 xc4vfx12 device.
Simulation is done using modelSim5.7. Hence the analyzed
results are compared with previously implemented
architectures for Virtex-4 family, as shown in table IV.

A. Discussion

Fig. 12, 13 are clearly depicting that Vedic 2x2 BCD digits
multiplier is at least 2.37 times faster (less delay) and occupies 4
times less hardware slices over previously proposed
architectures in [10-12].

Only 7-bit binary to decimal converter is used for 2x2 digits
multiplication. After removing all the previously proposed
architecture level corrections, we further improve its
performance by using proposed three-three split algorithm.

We have also implemented a modified version of [6] for BCD
multiplication so as to get an output of 8 bits rather than 7 and it
requires 2 adders less.

Finally, we can conclude that our proposed Vedic BCD
multiplier is better in terms of area in slices and time of delay
over the most efficient in this field of architecture.

Fig 7: Block diagram of 1x1 BCD Digit Multiplier

Fig 8: VHDL implementation of 1x1 BCD Digit Multiplier

Fig 9: Proposed Architecture of 2x2 BCD Digits Multiplier

Fig 10: Proposed Architecture of 4x4 BCD Digits Multiplier

Fig 11: VHDL implementation of 2x2 BCD digits Multiplier

1In this paper 1x1-digit is equitant to 4x4 BCD as used in [10-12].

21

Types of Multiplier Proposed Delay

Vedic BCD multiplier 15.621ns

[11] sutter 34ns

Vedic BCD multiplier 29.412

[12] Vestias 58

[11] Sutter 68

[10]Erld 77

2x2-digits

1x1-digit

SKIT RESEARCH JOURNAL VOLUME 4; ISSUE 2: 2014

Table 4: Comparison Between Vedic Bcd Multiplier And Previously
Proposed Multipliers In Terms Of Delay

Fig 12: Comparison of 2x2 BCD digits multipliers in term of delay

Fig 13: Comparison of 2x2 BCD digits multipliers in term of slices

6. ACKNOWLEDGMENT

We would like to thank all the faculty members of Computer
Science department for their invaluable guidance during this
research.

7. CONCLUSION AND FUTURE WORK

In this paper we have compared conventional BCD multiplier
to proposed Vedic BCD multiplication and the synthesized
results of Vedic 2x2 BCD multiplier depicts its efficiency in
terms of slices and time of delay

Now, this paper will boost the on-going research of the scholars
in the field of decimal arithmetic. A highly efficient binary to
BCD conversion algorithm is required for further improvement
in this Vedic BCD Multiplier.

REFERENCES

[1] Alvaro Vázquez and Paolo Montuschi, “A New Family of
High–Performance Parallel Decimal Multipliers,” 18th IEEE Symp.
Computer Arithmetic, pp. 195 – 204, June 2007.

[2] Rekha K. James and Sreelasasi, “Decimal Multiplication using compact
BCD Multiplier,” International Conf. Electronic Design, pp. 1-3, Dec.
2008.

[3] Mario Vestias and HoracioNeto, “Parallel Decimal Multipliers and
Squarers using Karatsuba-Ofman's Algorithm,” 15th Euromicro Conf.
Digital System Design, pp. 782 – 788, Sept. 2012.

[4] M. F. Cowlishaw, “Decimal floating-point: Algorism for computers,”
Proc. 6th IEEE International Symp. Computer Arithmetic, pp. 104–111,
Jun. 2003.

[5] Prabir Saha, Arindam Banerjee, Anup Dandapat, and Partha
Bhattacharyya “Design of High Speed Vedic Multiplier for Decimal
Number System,” Springer-Verlag Berlin Heidelberg, pp. 79–88, 2012.

[6] V Jayaprakasan, S Vijayakumar and V S KanchanaBhaaskaran,
“Evaluation of the Conventional vs. Ancient Computation methodology
for Energy Efficient Arithmetic Architecture,” International Conf.
Automation, Control and Computing, pp. 20-22 July 2011.

[7] Osama Al-Khaleel, Zakaria Al-Qudah and Mohammad Al-Khaleel,
“Fast and compact binary-to-BCD conversion circuits for decimal
multiplication,” 29th International Conf. on Computer Design, pp. 226 –
231, Oct. 2011.

[8] Jairaj Bhattacharya, Aman Gupta and Anshul Singh, “A High
Performance Binary to BCD Converter for Decimal Multiplication,”
International Symp. VLSI Design Automation and Test, pp. 315-318,
April 2010.

[9] Liu Han and Seok-Bum, “High-Speed Parallel Decimal Multiplication
with Redundant Internal Encodings,” IEEE Trans. Computers, Vol. 62,
no. 5, pp. 956 – 968, May 2013.

[10] M. A. Erle and M. J. Schulte, “Decimal multiplication via carry-save
addition,” Proc. 14th IEEE International Conf. Application Specific
Systems, pp. 348–358, June 2003.

[11] G. Sutter, E. Todoro vich, G. Bioul, M. Vazquez, and J.-P. Deschamps,
“FPGA implementations of BCD multipliers,” Proc. IEEE International
Conf. Reconfigurable Computing and FPGAs, pp. 36–41, Dec. 2009.

[12] Vestias, M.P, Neto and H.C. “Iterative Decimal Multiplication Using
Binary Arithmetic,” 7th Southern Conference Programmable Logic, pp.
257 – 262, April 2011.

22

