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Abstract: This paper deals with the low complexity 

algorithm for the check node processing i.e. L-bubble 
check algorithm in non-binary LDPC decoders. After 
a review of the state-of-the-art, there is a focus on a 
reduction of hardware requirement for check node 
processing using high level synthesis. High level 
synthesis helps in optimizing the hardware design to a 
great extent. This motivated to use high level synthesis 
for implementing the L-bubble check algorithm.
Finally, high level synthesis results are presented 
which shows that the number of slices required to 
implement the L-bubble check algorithm using HLS is 
204. 
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1. INTRODUCTION 
 
Low-density parity-check codes that are 

popularly called as LDPC codes are a subset of 
linear block codes having characteristic that they 
can approach the Shannon limit. They were first 
presented in [1] by R. Gallager in 1962 but did not 
get much attention for use. Later in 1999, they were 
rediscovered by D.J.C. Mackay in [2]. Non-Binary 
Low Density Parity Check (NB-LDPC) codes have 
various advantages like they have good 
performance, high speed and high throughput codes 
with reference to the currently used codes like turbo 
codes, hamming codes, etc [3]. They work well 
when the code rate is high. There are mainly two 
important issues behind not using them. The first 
issue is the decoders that are used to decode these 
codes have high complexity [4] in terms of the 
hardware requirement. The second issue was that 
the IC technology was not that much in use as it is 
in the present decade. So, no attention was given to 
them for their practical use. For the last few years, 
due to the development of IC technology, the focus 
is given to these codes for practical use in current 
applications where its benefits can be exploited. 
Currently, the Binary variant of these codes gains 
much popularity and is used in various applications 
like WiMAX wireless communications, digital 

video broadcasting, 10GBase-T Ethernet and 
magnetic and solid-state drives. They are also in use 
in many Orthogonal Frequency Division 
Multiplexing (OFDM) systems.  

Non-binary LDPC codes have better performance 
and error correction capabilities. But the major 
problem is that they require high amount of 
hardware when implemented using VHDL code. 
So, in this work, the L-bubble check algorithm used 
in its decoder is implemented using High level 
synthesis to reduce hardware requirement which is 
the novelty of this work. 

The paper is organized as follows: Section II 
explains the basic overview of check node 
processing, L-bubble check algorithm, and high 
level synthesis. Section III explains the 
methodology used. Section IV shows the synthesis 
results for the L-bubble check algorithm. Section V 
concludes the discussion. 

 
2. CHECK NODE PROCESSING 

 
2.1 Decoding of NB-LDPC codes 

Those decoding algorithms which are used for 
binary LDPC codes can be easily modified and used 
for decoding the non-binary LDPC codes. 
Currently, belief propagation decoding algorithm, 
Min-Max decoding algorithm, Extended Min-Sum 
(EMS) [4] decoding algorithm are used for 
decoding these codes. Some decoders involve 
multiplication operation for decoding but 
implementing multiplication operation on the 
hardware results in high resource utilization and 
floor area. So, for reducing the hardware 
requirement, Extended Min-Sum (EMS) [4] 
decoding algorithm is used where instead of 
multiplication operation, addition operation is 
utilized with a sorting algorithm. 

In the decoding process of non binary LDPC 
codes, there are mainly four steps involved. They 
are initialization, check node processing, variable 
node processing, and decision making. These steps 
are repeated again until a valid codeword is found 
in decoding [4]. The whole decoding process is 
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based upon the tanner graph which is constructed 
for the codes on the basis of the parity check 
equations which defines the code. A tanner graph 
has two types of node i.e. check node and variable 
node. There are also connections present between 
the two types of nodes. The check node represents 
the rows of the parity check matrix used to define 
the codes while a variable node represents the 
columns. 

So, there are two important phases of NB-LDPC 
code decoders. They are Check node processing and 
Variable node processing. While decoding the 
codes, the processing of rows and columns of the 
parity check matrix is carried out. If all the parity 
check equations are found to be satisfied then only 
a received bit is called as correct. So, the processing 
of rows of parity check matrix with the received 
bits is called check node processing and the 
processing of columns of parity check matrix is 
called variable node processing. Check node 
processing is very much complex than variable 
node processing when compared in terms of 
hardware required to implement them on the 
hardware. This restricts there use in hardware 
limited applications. So, there is a need to reduce 
this hardware need for efficiently implementing the 
decoder for these codes.  

 
2.2 Check Node Processing 

As previously mentioned, the processing of rows 
of parity check matrix with the received bits is 
termed as check node processing. The belief 
propagation algorithm as used for decoding binary 
LDPC codes can be used to decode NB-LDPC 
codes. But here, the check node processing part will 
also calculate the sum of products of probabilities. 
In the calculations of the non-binary variant of these 
codes, check node processing can be considered as 
the convolutions of the received messages. The 
belief propagation decoding algorithm used for NB-
LDPC codes has many disadvantages like it needs 
multiplication operation for performing the 
decoding which is expensive to be implemented on 
the hardware or it needs to calculate Fourier 
transforms in log domain which is harder to 
implement, etc. So, extended min-sum algorithms 
and the Min-max algorithm were developed which 
are in the log domain. The hardware complexity 
was highly reduced because only the addition 
operation is required in there check node processing 
[5]. In EMS and min-max algorithms, Log-
Likelihood Ratios are defined that are associated 
with each symbol. These LLRs are defined with 
respect to the most likely finite field element. So, 
according to this, all the LLRs are always positive, 

and the LLRs for the most likely field element is 
always zero in each and every vector. Those LLRs 
having smaller values have more chances for the 
received symbol to be equal to the respective field 
element. 

The LLRs in the array is then sorted and 
transferred to the resultant output array. It can be 
noted that due to the sum operation performed, the 
next smallest entry may not be always the neighbor 
of the current smallest entry [6],[7],[8]. That’s why 
some sorting needs to be implemented. When a new 
smallest value is found then its respective field 
elements are compared with those of previous 
entries. If a field element is found to be different 
then only the next smallest entry is swapped to the 
output array. For sorting, the L-Bubble check [8] 
algorithm is used.  
 
2.3 L-Bubble Check Algorithm 

The L-bubble check algorithm [8] can be 
described as follows: - 
1. Read U(i') and V(j') from memories U and V. 
2. Compute T(i',j') = U(i')+V(j'), this value 

becomes the indth bubble (position of the 
bubble extracted in the preceding cycle) and 
the corresponding register is thus bypassed.  

3. Determine the minimum value in the sorter and 
its associated index @ind (min operator). 

4. From @ind, update the address of the ith 
bubble and store it for the next cycle. The 
replacing rule is: 

a) if @ind = 0 or 1, then j' = j + 1  
b) elsif (@ind = 2 & j = 1) then j' = 2  
c) else i' = i + 1 

Here, U(i') and V(j') are the two input vectors or 
arrays which will contain the input pre sorted LLR 
values. T(i',j') is a two dimensional array which 
will contain the bitwise sum of U(i') and V(j'). 
@ind is used as a flag for replacing new values in 
the bubbles. 

 
2.4 High Level Synthesis 

High level synthesis or HLS which is also called 
as C synthesis or behavioral synthesis or 
algorithmic synthesis. It is a process where it 
converts a description of an algorithm into an RTL 
design which is a digital hardware The description 
of the algorithm is given as input in the form of 
code in any of the high level languages like ANCI 
C/ C++/ System C/ MATLAB, etc [12].  

The code is first analyzed, architecturally 
constrained, and then scheduled to transcompiled 
into a register-transfer level (RTL) design in a 
hardware description language (HDL), which is 
generally synthesized into the gate level by the use 
of a logic synthesis tool. Here the user needs not to 
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worry about hardware description language [12]. 
Instead of it, the user just needs to know any of the 
above-mentioned high-level languages. This makes 
the task easier as now the designer only needs to 
concentrate on just the description part.  

The tool will automatically construct an RTL 
design that has the same functionality as the input 
description of the algorithm has. The main focus of 
HLS allows the user to focus only on the 
description part and the optimization part and rest 
are handled automatically by the tool [12]. The tool 
also tries to optimize the design in an optimum way 
to exactly meet the timing constraints. If the user 
wants to optimize specific parameters according to 
the demand then this can also be done by applying 
the directives. The user has to apply certainly 
required directive which forces the tool to optimize 
the hardware according to the user’s requirement. 
High level synthesis works as a bridge between the 
hardware and software [9]. 

When an algorithm is high level synthesized than 
the HLS tool follows a course of action. As the 
algorithm’s description is written in the high level 
language, it has to be converted into hardware 
language or hardware operation and that is done by 
the HLS tool. The decisions like when an operation 
will be executed, when an operation will be ended, 
what will be the sequence of operation to achieve 
the desired functionality, etc. these all things are 
taken care of by the tool itself [10]. 

The overall process of High level synthesis is 
divided into three phases [11],[12]: 

1. Scheduling 
2. Binding 
3. Control logic extraction 
The whole description of the algorithm should be 

present in the top-level function as this file is the 
one which is converted into the hardware design by 
the HLS tool. Only a single function can be the top-
level function. The test bench is also a very 
important part of the whole High level synthesis 
process as verification is always an important part 
of any design [11]. The test bench calls the top-
level function with some test inputs and verifies the 
generated output with the test output i.e. the original 
output which represents the original functionality of 
the algorithm. The tool itself verifies the 
functionality of the top-level function and the 
created hardware with the help of a test bench. By 
default, the tool is designed such that if the test 
bench returns non-zero value then the hardware has 
failed in the verification phase and if it returns a 
zero value then only the hardware has passed the 
verification [12]. 

 

3. IMPLEMENTATION OF L-BUBBLE 
CHECK ALGORITHM USING HIGH LEVEL 

SYNTHESIS 
 
3.1 Methodology used for implementation 

The methodology adopted for the high level 
synthesis of the L-bubble check algorithm is shown 
in Fig. 1 as follows: 

 

 
Figure 1 : Methodology for the high level synthesis of L-bubble 

check algorithm 
 

The tool used for the high level synthesis of the 
L-bubble check algorithm is Vivado HLS 2017.4. 
The code for the L-bubble check algorithm is 
written in C language and then simulated with the 
same tool. High level synthesis is performed and an 
RTL is generated after verification using a test 
bench. The RTL is exported from Vivado HLS 
2017.4 tool. 

4. SYNTHESIS RESULTS 

After performing the high level synthesis, the C 
code for the L-bubble check algorithm is converted 
into an RTL design [12]. The C simulation result 
for the simulation of the C code for the L-bubble 
check algorithm is shown in Fig. 2. 
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Then the high level synthesis is performed for the 
C code. The timing result generated is shown in 
table 1. 

 

 
Figure 2 : C simulation result for L-bubble check algorithm 

Table 1: Timing result after performing High level synthesis 

Clock Target Estimate Uncertainty 
ap_clk 10.00 ns 8.13 ns 1.25 ns 

 
The utilization estimate result is shown in table 2. 
 
Table 2 : Utilization estimate for L-bubble check algorithm 

The resource usage results and timing results 
generated after high level synthesis is shown in 
table 3 and table 4, respectively.  

5. CONCLUSION 

In this paper, the L-bubble check algorithm which 
is used in check node processing for sorting out 

optimum LLR values is synthesized using high 
level synthesis. As this algorithm has never been 
implemented using high level synthesis so it the 
novelty of this work. For this the C code for the 
algorithm is written and then high level synthesis is 
carried out. The resource usage result shows that 
the number of slices used here is 204. The results in 
paper [8] shows the number of slices required to 
implement L-bubble check algorithm is 498, when 
implemented using writing VHDL code. So, there is 
a reduction in the number of slices of around 59%. 
So, it is concluded that when the algorithm is 
implemented using high level synthesis, there a 
significant reduction in the hardware requirement. 

 
Table 3 : Resource usage for L-bubble check algorithm 

synthesized using high level synthesis 

Resource usage VHDL 
SLICE 204 
LUT 559 
FF 550 

DSP 0 
BRAM 1 

 
SRL 

0 

Table 4:Timing summary for L-bubble check algorithm 
synthesized using high level synthesis 

Timing summary VHDL 
CP required 10.000 

CP achieved post-synthesis 8.476 
CP achieved post-
implementation 

9.213 

*(CP is Clock Pulse) 
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