
SKIT Research Journal VOLUME 10; ISSUE 1: 2020

26

High level synthesis of L-bubble check
algorithm for check node processing

Himanshu Sharma, Manju Choudhary, Vikas Pathak, Ila Roy Saxena

Department of Electronics and Communication, Swami Keshvanand Institute of Technology, Management and
Gramothan, Jaipur-302017 (INDIA)

Email- sharmahimanshu290493@gmail.com
Received 23.08.2019 received in revised form 16.12.2019, accepted 21.12.2019

Abstract: This paper deals with the low complexity

algorithm for the check node processing i.e. L-bubble
check algorithm in non-binary LDPC decoders. After
a review of the state-of-the-art, there is a focus on a
reduction of hardware requirement for check node
processing using high level synthesis. High level
synthesis helps in optimizing the hardware design to a
great extent. This motivated to use high level synthesis
for implementing the L-bubble check algorithm.
Finally, high level synthesis results are presented
which shows that the number of slices required to
implement the L-bubble check algorithm using HLS is
204.

Keywords: Non-Binary Low Density Parity Check
decoders, check node processing, L-bubble check
algorithm, high level synthesis.

1. INTRODUCTION

Low-density parity-check codes that are

popularly called as LDPC codes are a subset of
linear block codes having characteristic that they
can approach the Shannon limit. They were first
presented in [1] by R. Gallager in 1962 but did not
get much attention for use. Later in 1999, they were
rediscovered by D.J.C. Mackay in [2]. Non-Binary
Low Density Parity Check (NB-LDPC) codes have
various advantages like they have good
performance, high speed and high throughput codes
with reference to the currently used codes like turbo
codes, hamming codes, etc [3]. They work well
when the code rate is high. There are mainly two
important issues behind not using them. The first
issue is the decoders that are used to decode these
codes have high complexity [4] in terms of the
hardware requirement. The second issue was that
the IC technology was not that much in use as it is
in the present decade. So, no attention was given to
them for their practical use. For the last few years,
due to the development of IC technology, the focus
is given to these codes for practical use in current
applications where its benefits can be exploited.
Currently, the Binary variant of these codes gains
much popularity and is used in various applications
like WiMAX wireless communications, digital

video broadcasting, 10GBase-T Ethernet and
magnetic and solid-state drives. They are also in use
in many Orthogonal Frequency Division
Multiplexing (OFDM) systems.

Non-binary LDPC codes have better performance
and error correction capabilities. But the major
problem is that they require high amount of
hardware when implemented using VHDL code.
So, in this work, the L-bubble check algorithm used
in its decoder is implemented using High level
synthesis to reduce hardware requirement which is
the novelty of this work.

The paper is organized as follows: Section II
explains the basic overview of check node
processing, L-bubble check algorithm, and high
level synthesis. Section III explains the
methodology used. Section IV shows the synthesis
results for the L-bubble check algorithm. Section V
concludes the discussion.

2. CHECK NODE PROCESSING

2.1 Decoding of NB-LDPC codes

Those decoding algorithms which are used for
binary LDPC codes can be easily modified and used
for decoding the non-binary LDPC codes.
Currently, belief propagation decoding algorithm,
Min-Max decoding algorithm, Extended Min-Sum
(EMS) [4] decoding algorithm are used for
decoding these codes. Some decoders involve
multiplication operation for decoding but
implementing multiplication operation on the
hardware results in high resource utilization and
floor area. So, for reducing the hardware
requirement, Extended Min-Sum (EMS) [4]
decoding algorithm is used where instead of
multiplication operation, addition operation is
utilized with a sorting algorithm.

In the decoding process of non binary LDPC
codes, there are mainly four steps involved. They
are initialization, check node processing, variable
node processing, and decision making. These steps
are repeated again until a valid codeword is found
in decoding [4]. The whole decoding process is

SKIT Research Journal VOLUME 10; ISSUE 1: 2020

27

based upon the tanner graph which is constructed
for the codes on the basis of the parity check
equations which defines the code. A tanner graph
has two types of node i.e. check node and variable
node. There are also connections present between
the two types of nodes. The check node represents
the rows of the parity check matrix used to define
the codes while a variable node represents the
columns.

So, there are two important phases of NB-LDPC
code decoders. They are Check node processing and
Variable node processing. While decoding the
codes, the processing of rows and columns of the
parity check matrix is carried out. If all the parity
check equations are found to be satisfied then only
a received bit is called as correct. So, the processing
of rows of parity check matrix with the received
bits is called check node processing and the
processing of columns of parity check matrix is
called variable node processing. Check node
processing is very much complex than variable
node processing when compared in terms of
hardware required to implement them on the
hardware. This restricts there use in hardware
limited applications. So, there is a need to reduce
this hardware need for efficiently implementing the
decoder for these codes.

2.2 Check Node Processing

As previously mentioned, the processing of rows
of parity check matrix with the received bits is
termed as check node processing. The belief
propagation algorithm as used for decoding binary
LDPC codes can be used to decode NB-LDPC
codes. But here, the check node processing part will
also calculate the sum of products of probabilities.
In the calculations of the non-binary variant of these
codes, check node processing can be considered as
the convolutions of the received messages. The
belief propagation decoding algorithm used for NB-
LDPC codes has many disadvantages like it needs
multiplication operation for performing the
decoding which is expensive to be implemented on
the hardware or it needs to calculate Fourier
transforms in log domain which is harder to
implement, etc. So, extended min-sum algorithms
and the Min-max algorithm were developed which
are in the log domain. The hardware complexity
was highly reduced because only the addition
operation is required in there check node processing
[5]. In EMS and min-max algorithms, Log-
Likelihood Ratios are defined that are associated
with each symbol. These LLRs are defined with
respect to the most likely finite field element. So,
according to this, all the LLRs are always positive,

and the LLRs for the most likely field element is
always zero in each and every vector. Those LLRs
having smaller values have more chances for the
received symbol to be equal to the respective field
element.

The LLRs in the array is then sorted and
transferred to the resultant output array. It can be
noted that due to the sum operation performed, the
next smallest entry may not be always the neighbor
of the current smallest entry [6],[7],[8]. That’s why
some sorting needs to be implemented. When a new
smallest value is found then its respective field
elements are compared with those of previous
entries. If a field element is found to be different
then only the next smallest entry is swapped to the
output array. For sorting, the L-Bubble check [8]
algorithm is used.

2.3 L-Bubble Check Algorithm

The L-bubble check algorithm [8] can be
described as follows: -
1. Read U(i') and V(j') from memories U and V.
2. Compute T(i',j') = U(i')+V(j'), this value

becomes the indth bubble (position of the
bubble extracted in the preceding cycle) and
the corresponding register is thus bypassed.

3. Determine the minimum value in the sorter and
its associated index @ind (min operator).

4. From @ind, update the address of the ith
bubble and store it for the next cycle. The
replacing rule is:

a) if @ind = 0 or 1, then j' = j + 1
b) elsif (@ind = 2 & j = 1) then j' = 2
c) else i' = i + 1

Here, U(i') and V(j') are the two input vectors or
arrays which will contain the input pre sorted LLR
values. T(i',j') is a two dimensional array which
will contain the bitwise sum of U(i') and V(j').
@ind is used as a flag for replacing new values in
the bubbles.

2.4 High Level Synthesis

High level synthesis or HLS which is also called
as C synthesis or behavioral synthesis or
algorithmic synthesis. It is a process where it
converts a description of an algorithm into an RTL
design which is a digital hardware The description
of the algorithm is given as input in the form of
code in any of the high level languages like ANCI
C/ C++/ System C/ MATLAB, etc [12].

The code is first analyzed, architecturally
constrained, and then scheduled to transcompiled
into a register-transfer level (RTL) design in a
hardware description language (HDL), which is
generally synthesized into the gate level by the use
of a logic synthesis tool. Here the user needs not to

SKIT Research Journal VOLUME 10; ISSUE 1: 2020

28

worry about hardware description language [12].
Instead of it, the user just needs to know any of the
above-mentioned high-level languages. This makes
the task easier as now the designer only needs to
concentrate on just the description part.

The tool will automatically construct an RTL
design that has the same functionality as the input
description of the algorithm has. The main focus of
HLS allows the user to focus only on the
description part and the optimization part and rest
are handled automatically by the tool [12]. The tool
also tries to optimize the design in an optimum way
to exactly meet the timing constraints. If the user
wants to optimize specific parameters according to
the demand then this can also be done by applying
the directives. The user has to apply certainly
required directive which forces the tool to optimize
the hardware according to the user’s requirement.
High level synthesis works as a bridge between the
hardware and software [9].

When an algorithm is high level synthesized than
the HLS tool follows a course of action. As the
algorithm’s description is written in the high level
language, it has to be converted into hardware
language or hardware operation and that is done by
the HLS tool. The decisions like when an operation
will be executed, when an operation will be ended,
what will be the sequence of operation to achieve
the desired functionality, etc. these all things are
taken care of by the tool itself [10].

The overall process of High level synthesis is
divided into three phases [11],[12]:

1. Scheduling
2. Binding
3. Control logic extraction
The whole description of the algorithm should be

present in the top-level function as this file is the
one which is converted into the hardware design by
the HLS tool. Only a single function can be the top-
level function. The test bench is also a very
important part of the whole High level synthesis
process as verification is always an important part
of any design [11]. The test bench calls the top-
level function with some test inputs and verifies the
generated output with the test output i.e. the original
output which represents the original functionality of
the algorithm. The tool itself verifies the
functionality of the top-level function and the
created hardware with the help of a test bench. By
default, the tool is designed such that if the test
bench returns non-zero value then the hardware has
failed in the verification phase and if it returns a
zero value then only the hardware has passed the
verification [12].

3. IMPLEMENTATION OF L-BUBBLE
CHECK ALGORITHM USING HIGH LEVEL

SYNTHESIS

3.1 Methodology used for implementation

The methodology adopted for the high level
synthesis of the L-bubble check algorithm is shown
in Fig. 1 as follows:

Figure 1 : Methodology for the high level synthesis of L-bubble

check algorithm

The tool used for the high level synthesis of the
L-bubble check algorithm is Vivado HLS 2017.4.
The code for the L-bubble check algorithm is
written in C language and then simulated with the
same tool. High level synthesis is performed and an
RTL is generated after verification using a test
bench. The RTL is exported from Vivado HLS
2017.4 tool.

4. SYNTHESIS RESULTS

After performing the high level synthesis, the C
code for the L-bubble check algorithm is converted
into an RTL design [12]. The C simulation result
for the simulation of the C code for the L-bubble
check algorithm is shown in Fig. 2.

Start

Writing C code for both
algorithms

Compilation and execution of
code in Turbo C++ and debugging

High Level Synthesis

Is functionality
correct?

End

NO

YE
S

Modifications in the code for
performing HLS

SKIT Research Journal VOLUME 10; ISSUE 1: 2020

29

Then the high level synthesis is performed for the
C code. The timing result generated is shown in
table 1.

Figure 2 : C simulation result for L-bubble check algorithm

Table 1: Timing result after performing High level synthesis

Clock Target Estimate Uncertainty
ap_clk 10.00 ns 8.13 ns 1.25 ns

The utilization estimate result is shown in table 2.

Table 2 : Utilization estimate for L-bubble check algorithm

The resource usage results and timing results
generated after high level synthesis is shown in
table 3 and table 4, respectively.

5. CONCLUSION

In this paper, the L-bubble check algorithm which
is used in check node processing for sorting out

optimum LLR values is synthesized using high
level synthesis. As this algorithm has never been
implemented using high level synthesis so it the
novelty of this work. For this the C code for the
algorithm is written and then high level synthesis is
carried out. The resource usage result shows that
the number of slices used here is 204. The results in
paper [8] shows the number of slices required to
implement L-bubble check algorithm is 498, when
implemented using writing VHDL code. So, there is
a reduction in the number of slices of around 59%.
So, it is concluded that when the algorithm is
implemented using high level synthesis, there a
significant reduction in the hardware requirement.

Table 3 : Resource usage for L-bubble check algorithm

synthesized using high level synthesis

Resource usage VHDL
SLICE 204
LUT 559
FF 550

DSP 0
BRAM 1

SRL

0

Table 4:Timing summary for L-bubble check algorithm
synthesized using high level synthesis

Timing summary VHDL
CP required 10.000

CP achieved post-synthesis 8.476
CP achieved post-
implementation

9.213

*(CP is Clock Pulse)

REFERENCES

[1] R. Gallager, “Low-density parity-check codes”, IRE
Transactions on Information Theory, vol. 8, pp.21-28,
1962.

[2] D.J.C. MacKay,” Good error-correcting codes based on
very sparse matrices”, IEEE Transactions on Information
Theory, vol. 45, pp.399-431, 1999.

[3] P. Venkateshwari and M. Anbuselvi, “Decoding
performance of binary and non-binary LDPC codes for
IEEE 802.11n standard”, International Conference on
Recent Trends in Information Technology, pp.292-296,
2012.

[4] Kai He, Jin Sha, and Zhongfeng Wang, “Nonbinary
LDPC code decoder architecture with efficient check
node processing”, IEEE transactions on circuits and
systems-II: Express briefs, pp.381-385, 2012.

[5] Leixin Zhou, Jin Sha, and Zhongfeng Wang, “Efficient
EMS decoding for non-binary LDPC codes”, 2012
international Soc design conference (ISOCC), pp.339-
342, 2012.

[6] Xiao Ma, Kai Zhang, Haiqiang Chen and Baoming Bai,
“Low complexity X-EMS algorithms for nonbinary
LDPC codes”, IEEE transactions on communication,
vol.60, pp.9-13, 2012.

[7] Oussama Abassi, Laura Conde-Canencia, Ali Al
Ghouwayel, and Emmanuel Boutillon, “A novel
architecture for elementary check node processing in

Name BRA
M_18

K

DSP48
E

FF LUT

DSP - - - -

Expression - - 0 997

FIFO - - - -

Instance - - - -
Memory 1 - 34 10
Multiplexer - - - 438
Register - - 604 -
Total 1 0 638 1445
Available 270 240 126800 63400

Utilization
(%)

~0 0 ~0 2

SKIT Research Journal VOLUME 10; ISSUE 1: 2020

30

non-binary LDPC decoders”, IEEE transactions on
circuits and systems II: Express briefs, pp.136-140,
2017.

[8] E. Boutillon and L. Conde-Canencia, “Simplified check
node processing in nonbinary LDPC decoders”,
International Symposium on Turbo Codes & Iterative
Information Processing, pp.201-205, 2010.

[9] Michael C. McFarland, Alice C. Parker and Raul
Camposano, “Tutorial on high-level synthesis”, IEEE
design automation conference, pp.331-336, 1988.

[10] Dan Gajaski, Todd Austin and Steve Svoboda, “What
input-language is the best choice for high level synthesis

(HLS)?”, Design automation conference, pp. 857-858,
2010.

[11] Philippe Coussy and Adam Morawiec, “High-Level
Synthesis: from algorithm to digital circuit”, Published
by Springer Science & Business Media, ISBN-978-1-
4020-8588-8, year 2008.

[12] “Vivado design suite user guide: High-Level Synthesis
(UG902)”, published by Xilinx Inc., year 2017.

