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Abstract: The aim of the present paper is to find the 
bending stresses and deflections for a clamped 
circular plate under non-uniform load. The load 
shape is assumed as a function involving Jacobi 
polynomials, 𝐇�-function and Srivastava polynomials. 
The deflection is obtained as a convergent infinite 
series. The small deflection is obtained as a special 
case. 
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1. INTRODUCTION 

 
In 1972, Srivastava polynomials [1] defined as: 

  𝑆𝑛𝑚[𝑥] = ∑ (−𝑛)𝑚𝑘𝐴𝑛,𝑘
[𝑛𝑚]
𝑘=0

𝑥𝑘

𝑘!
, 𝑛 = 0,1,2,  .. (1) 

where m is an arbitrary positive integer and the 
coefficients )0,(  , ≥kNA kN  are arbitrary 
constants, real or complex. 
In 1987, Hussain[2,3] defined and studied the H~ -
function as: 

𝐻�𝑃,𝑄
𝑀,𝑁[𝑧] = 𝐻�𝑃,𝑄

𝑀,𝑁 �𝑧 �
(𝑎𝑗 ,𝛼𝑗; 𝜏𝑗)1,𝑁(𝑎𝑗 ,𝛼𝑗)𝑁+1,𝑃
(𝑏𝑗 ,𝛽𝑗)1,𝑀(𝑏𝑗 ,𝛽𝑗; 𝜁𝑗)𝑀+1,𝑄

�� 

                              = 1
2𝜋𝑖 ∫ Ψ(𝜉)𝑧𝜉𝑑𝜉𝑖∞

−𝑖∞   …(2) 
      where                      
   

Ψ(𝜉) =
∏ Γ(𝑏𝑗−𝛽𝑗𝜉)𝑀
𝑗=1 ∏ �Γ(1−𝑎𝑗+𝛼𝑗𝜉�

𝜏𝑗𝑁
𝑗=1

∏ �Γ(1−𝑏𝑗+𝛽𝑗𝜉�
𝜁𝑗𝑄

𝑗=𝑀+1 ∏ Γ(𝑎𝑗−𝛼𝑗𝜉)𝑃
𝑗=𝑁+1

   (3) 

for the convergence and existence condition, basic 
properties of H~ - function, one may refer to the work 
by by Buschman and Srivastava [4]. 
In the present paper the large deflection of a 
clamped circular plate under non-uniform load 
following Berger's approximation [5] the plane 
displacement and the bending stresses for the 
circular plate are obtained. Applied external 
pressure p is assumed to be axis symmetric. The 
pressure p(r) is taken as a function involving Jacobi 
polynomials, Srivastava polynomials, H~ -function as             

𝑝(𝑟) = 𝐶0 �1 − 𝑟2

𝜌2
�
𝛼
𝑃𝛽
𝑎,𝑏 �1 − 2𝑟2

𝜌2
� 𝑆𝑛𝑚 �1 −

𝑟2

𝜌2
�𝐻�𝑃,𝑄

𝑀,𝑁 �1 − 𝑟2

𝜌2
� …(4) 

where )(, yP ba
β is the well known Jacobi 

polynomials [6] and C0 is the arbitrary constant.  
 

2. STATEMENT OF PROBLEM 
 

The approximate equations for a clamped circular 
plate of flexural rigidity D, Thickness t and radius 
ρ , undergoing large deflection due to an externally 
applied non uniform load p(r) following Berger’s 
approximation method [5], may be written as: 
� 𝑑

2

𝑑𝑟2
+ 1

𝑟
𝑑
𝑑𝑟
� �𝑑

2𝑤
𝑑𝑟2

+ 1
𝑟
𝑑𝑤
𝑑𝑟
− 𝑉2𝑤� = 𝑝

𝐷
= 𝜓(𝑟)…(5) 

where V is a normalized constant of integration 
given by                                  

    𝑑𝑥
𝑑𝑟

+ 𝑥
𝑟

+ 1
2
�𝑑𝑤
𝑑𝑟
�
2

= 𝑉2𝑡2

12
  ,  …(6) 

 
where  x is the radial displacement and  w is the 
plate deflection normal to the middle plane of the 
clamped circular plate. 
The problem possesses following boundary 
conditions  

𝑤 =
𝑑𝑤
𝑑𝑟

= 0     𝑎𝑡 𝑟 = 𝜌 
  𝑥 = 0   𝑎𝑡 𝑟 = 𝜌  …(7) 

 
3. SOLUTION OF THE PROBLEM 

 
Let us take                                            
𝑤=∑ 𝐴𝑗[𝐽0(𝑟𝜆𝑖) −𝑖 𝐽0(𝜌𝜆𝑖)] …(8) 

   where iλ being the ith
   root of 𝐽1(𝜌𝜆𝑖) = 0. 

 
The boundary conditions (7) are satisfied by above 
equation. 
For the value of w given by equation (8), the 
equation (5) becomes 
∑ 𝐴𝑖𝜆𝑖2(𝑉2 +𝑖 𝜆𝑖2)𝐽0(𝑟𝜆𝑖) = Φ(𝑟)  … (9) 
by expanding Φ(r) in terms of Bessel function and 
then integrating we get    
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   ∫ ∑  𝐴𝑖𝜆𝑖2(𝑉2 +𝑖 𝜆𝑖2)𝐽02(𝑟𝜆𝑖)
𝜌 
0 𝑟𝑑𝑟 =

                                             ∫ Φ(𝑟)𝐽0(𝑟𝜆𝑖)𝑟𝑑𝑟
ρ
0          

    or              
 1
2
𝐴𝑖𝜌2𝜆𝑖2(𝑉2 + 𝜆𝑖2)𝐽02(𝜌𝜆𝑖) = ∫ 𝑟Φ(𝑟)𝐽0(𝑟𝜆𝑖)𝑑𝑟

ρ
0        

   

Hence     𝐴𝑖 =
2 ∫ 𝑟Φ(𝑟)𝐽0(𝑟𝜆𝑖)𝑑𝑟

ρ
0

𝜌2𝜆𝑖
2(𝑉2+𝜆𝑖

2)𝐽0
2(𝜌𝜆𝑖)

    …(10) 

Using Erdélyi[7], Equations (1), (2),(3) and the 
definition of Bessel function and then interchanging 
the order of summation and integration, we get an 
interesting integral     
∫ 𝑢2𝜏+1(1 − 𝑢2)𝛼𝑃𝛽

𝑎,𝑏(1 − 2𝑢2)𝑆𝑛𝑚(1 −1
0
𝑢2)𝐻�𝑃,𝑄

𝑀,𝑁(1 − 𝑢2)𝐽𝜇(𝑢𝑣)𝑑𝑢 = 

�
(−𝑛)𝑚𝑙

𝑙!
𝐴𝑛,𝑙

[𝑛𝑚]

𝑙=0

� �
(−1)𝑙′(−𝛽)𝑙′′
𝛽! 𝑙′! 𝑙′′!

∞

𝑙′′=0

∞

𝑙′=0

 

 

      .
(1+𝑎+𝑏+𝛽)𝑙′′(1+𝜏+𝜆2+𝑠)𝑙′′

Γ(1+𝑎+𝑙′′)
Γ(1+𝑎+𝛽)
Γ(𝜆+𝑙′+1)

�𝑣
2
�
𝜆+2𝑙′

 
 

.𝐻�𝑃+1,𝑄+1
𝑀,𝑁+1 �1 �

(−𝛼 − 𝑙, 1; 1)
�𝑏𝑗 ,𝛽𝑗�1,𝑀

(𝑏𝑗 ,𝛽𝑗: 𝜁𝑗)𝑀+1,𝑄
�� 

 

  �
(𝑎𝑗 ,𝛼𝑗; 𝜏𝑗)1,𝑁(𝑎𝑗 ,𝛼𝑗)𝑁+1,𝑃

(−1 − 𝛼 − 𝑙 − 𝑙′ − 𝑙′′ − 𝜏 − 𝜆
2

, 1: 1)
�…(11) 

Where  
𝑅𝑒(𝑎) > −1, 𝑅𝑒(𝑏) > −1, 𝑅𝑒(𝜏) > −1,

𝑅𝑒(𝛼) > −1,  
𝑅𝑒(𝜆) > −1

2
 ,𝑅𝑒 �𝛼 +

𝑏𝑗
𝛽𝑗
� > 0, 𝑗 = 1,2, … ,𝑚  ,  

By equations (10) and (11) we have 
 

 𝐴𝑖 =
𝐶0
𝐷

Γ(1 + 𝑎 + 𝛽)
𝛽! 𝜆𝑖2(𝑉2 + 𝜆𝑖2)𝐽02(𝜌𝜆𝑖)

 

.�
(−𝑛)𝑚𝑙

𝑙!
𝐴𝑛,𝑙

[𝑛𝑚]

𝑙=0

� �
(−1)𝑙′(−𝛽)𝑙′′

𝑙′! 𝑙′′!

∞

𝑙′′=0

∞

𝑙′=0

 

            

.
(1 + 𝑎 + 𝑏 + 𝛽)𝑙′′(1 + 𝑙′)𝑙′′

Γ(1 + 𝑎 + 𝑙′′)
�
𝜌𝜆𝑖
2
�
2𝑙′

 

 

.𝐻�𝑃+1,𝑄+1
𝑀,𝑁+1 �1 �

(−𝛼 − 𝑙, 1; 1)
�𝑏𝑗 ,𝛽𝑗�1,𝑀

(𝑏𝑗 ,𝛽𝑗: 𝜁𝑗)𝑀+1,𝑄
�� 

  �
(𝑎𝑗 ,𝛼𝑗; 𝜏𝑗)1,𝑁(𝑎𝑗 ,𝛼𝑗)𝑁+1,𝑃

(−1 − 𝛼 − 𝑙 − 𝑙′ − 𝑙′′, 1: 1)� …(12) 

By equations (12) and (8), we obtain 
  
𝑤 = 𝑅1 ∑

𝑅2
(𝑉2+𝜆𝑖

2)
[𝐽0(𝑟𝜆𝑖) −𝑖 𝐽0(𝜌𝜆𝑖)]   …(13) 

 
where    𝑅1 = 𝐶0

𝐷
Γ(1+𝑎+𝛽)

𝛽!
  

 

and 
 𝑅2 =

1
𝜆𝑖
2𝐽0
2(𝜌𝜆𝑖)

.∑ (−𝑛)𝑚𝑙
𝑙!

𝐴𝑛,𝑙
[𝑛𝑚]
𝑙=0 ∑ ∑ (−1)𝑙

′
(−𝛽)𝑙′′

𝑙′!𝑙′′!
∞
𝑙′′=0

∞
𝑙′=0  

            

.
(1 + 𝑎 + 𝑏 + 𝛽)𝑙′′(1 + 𝑙′)𝑙′′

Γ(1 + 𝑎 + 𝑙′′)
�
𝜌𝜆𝑖
2
�
2𝑙′

 

 

.𝐻�𝑃+1,𝑄+1
𝑀,𝑁+1 �1 �

(−𝛼 − 𝑙, 1; 1)
�𝑏𝑗 ,𝛽𝑗�1,𝑀

(𝑏𝑗 ,𝛽𝑗: 𝜁𝑗)𝑀+1,𝑄
�� 

� (𝑎𝑗 ,𝛼𝑗; 𝜏𝑗)1,𝑁(𝑎𝑗 ,𝛼𝑗)𝑁+1,𝑃

(−1 − 𝛼 − 𝑙 − 𝑙′ − 𝑙′′, 1: 1)� 

 The radial displacement is   
 

𝑟𝑥 = 𝑉2𝑡2𝑟2

24
− 1

2
∑ 𝐴𝑖2𝜆𝑖2 �

𝑟2

2
�𝐽1′2(𝑟𝜆𝑖) +∞

𝑙′=1

             �1 − 1
𝑟2𝜆𝑖

2� 𝐽12(𝑟𝜆𝑖)�� −

              1
2
∑ ∑ 𝐴𝑖𝐴𝑗𝜆𝑖𝜆𝑗∞

𝑗=1
𝑙′≠𝑗

∞
𝑙′=1    

   . �
𝜆𝑖𝐽2(𝑟𝜆𝑖)𝐽1(𝑟𝜆𝑗)−𝜆𝑗𝐽2(𝑟𝜆𝑗)𝐽1(𝑟𝜆𝑖)

𝜆𝑖
2−𝜆𝑗

2 � + 𝐶′   …(14) 

where C’  is the constant of integration. 
Equation (14)  can be obtained by using equations 
(6) and (8). 
 
On applying the conditions  u = 0 at r = ρ  and 
using 𝐽1(𝜌𝜆𝑖) = 0, we obtain 
𝐶′ = − 𝑉2𝑡2𝜌2

24
+ 1

4
∑ 𝐴𝑖2𝜆𝑖2𝜌2𝐽02(𝜌𝜆𝑖)∞
𝑙′=1             

When V = 0, the differential equation (5) 
corresponds to the small deflection equation. By 
virtue of the equation (13), we get  
𝑤 = 𝑅1 ∑

𝑅2
𝜆𝑖
2 [𝐽0(𝑟𝜆𝑖) −𝑖 𝐽0(𝜌𝜆𝑖) …(15) 

By taking r = 0 in the equation (13), the deflection 
at the centre of plate is obtained as 
𝑤0 = 𝑅1 ∑

𝑅2
(𝑉2+𝜆𝑖

2)
[1 −𝑖 𝐽0(𝜌𝜆𝑖)]  …(16) 

For the small deflection at centre of the plate, we 
obtain 

𝑤0 = 𝑅1 ∑
𝑅2
𝜆𝑖
2 [1 −𝑖 𝐽0(𝜌𝜆𝑖)]  …(17) 

Berger, H. M. [ 5 ] introduced the bending 
stresses at the surface of the circular plate as   
  
𝜎𝑟 = −6𝐷

𝑡2
�𝑑

2𝑤
𝑑𝑟2

+ 𝜐
𝑟
𝑑𝑤
𝑑𝑟
�  …(18) 

𝜎𝜃 = −6𝐷
𝑡2
�𝜐 𝑑

2𝑤
𝑑𝑟2

+ 1
𝑟
𝑑𝑤
𝑑𝑟
� …(19) 

here υ is the Poisson’s ratio. 
The deflection obtained in equation (13) can be 

used to determine these stresses. Hence the bending 
stresses at the centre are 

(𝜎𝑟)𝑟=0 = (𝜎𝜃)𝑟=0 =
3𝐷
𝑡2

𝑅1�
𝑅2

(𝑉2 + 𝜆𝑖2)
[𝜐 + 1]

𝑖

 

 …(20) 
Also the  bending stresses at the edge are 
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(𝜎𝑟)𝑟=𝜌 = 6𝐷
𝑡2
𝑅1 ∑

𝑅2
�𝑉2+𝜆𝑖

2�
𝜆𝑖2𝐽0(𝜌𝜆𝑖)𝑖  …(21) 

(𝜎𝜃)𝑟=𝜌 = 6𝐷
𝑡2
𝑅1 ∑

𝑅2
�𝑉2+𝜆𝑖

2�
𝜐𝜆𝑖2𝐽0(𝜌𝜆𝑖)𝑖   …(22) 

 
4. BEHAVIOUR OF THE FAMILY OF LOAD 

SHAPE p(r) 
By (1.4), we have 

 𝑝(𝑟) = 𝐶0 �1 − 𝑟2

𝜌2
�
𝛼
𝑃𝛽
𝑎,𝑏 �1 − 2𝑟2

𝜌2
� 𝑆𝑛𝑚 �1 −

𝑟2𝜌2𝐻𝑃,𝑄𝑀,𝑁1−𝑟2𝜌2  

= 𝐶0�
(−𝑛)𝑚𝑙

𝑙!
𝐴𝑛,𝑙

[𝑛𝑚]

𝑙=0

1
2𝜋𝑖

� Ψ(𝑠) �1 −
𝑟2

𝜌2
�
𝛼+𝑙+𝑠𝑖∞

−𝑖∞

 

    . 𝐹1 �
−𝛽, 𝑎 + 𝑏 + 𝛽 + 1

𝑎 + 1 ; 𝑟
2

𝜌2
�2 𝑑𝑠       …(23) 

 
Following two cases have been considered here 
(i) On taking 𝛽 = 1 and 𝑎, 𝑏,𝛼 > 0  then 

𝑝(𝑟) = 𝐶0�
(−𝑛)𝑚𝑙

𝑙!
𝐴𝑛,𝑙

�𝑛𝑚�

𝑙=0

1
2𝜋𝑖

 

.∫ Ψ(𝑠) �1 − 𝑟2

𝜌2
�
𝛼+𝑙+𝑠𝑖∞

−𝑖∞ �1 − (𝑎+𝑏+2)
1+𝑎

𝑟2

𝜌2
� 𝑑𝑠  

                       …(24) 

At   𝑟 = 𝜌�� 1+𝑎
𝑎+𝑏+2

�   and  𝑟 = 𝜌, we have  𝑝(𝑟) =

0   
It shows the dependency of r on a and b  and 
indicates that load shape 𝑝(𝑟) changes sign at 

        𝑟 = 𝜌�� 1+𝑎
𝑎+𝑏+2

�    as is clear from (25). 

(ii) On taking 𝛽 = 𝑎 = 𝑏 = 0,𝑛 = 0,𝛼 > 0, 

𝜏𝑗 = 𝜁𝑗 = 1,𝑃 = 𝑁 = 0,𝑀 = 𝑄 = 1; 𝑏𝑗 = 𝑎𝑗 = 𝛼𝑗
= 0; 𝛽𝑗 = 1 

we have  

𝑝(𝑟) = 𝐶0 ∑
(−1)𝑛

𝑛!𝑛 �1 − 𝑟2

𝜌2
�
𝑛+𝛼

 …(26) 
For suitable values of n it is an axially symmetric 

distribution of the force over the plate acting in the 
positive direction. We also have a number of force 
distributions of different intensities for various 
values of α. 

5. CONCLUSION 
 

As the single function p(r) represents several 
types of loading and therefore the result obtained in 
the present study is capable of unifying scores of 
hitherto scattered results in the concerned literature. 
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