Large Deflection of A Circular Plate and \widetilde{H}-Function

Vijay Kumar Singhal
Department of Mathematics, Swami Keshvanand Institute of Technology, Management \& Gramothan, Jaipur, 302017 (INDIA)
\section*{Email-}

Received 18.02.2019 received in revised form 25.04.2019, accepted 30.04.2019

Abstract

The aim of the present paper is to find the bending stresses and deflections for a clamped circular plate under non-uniform load. The load shape is assumed as a function involving Jacobi polynomials, \widetilde{H}-function and Srivastava polynomials. The deflection is obtained as a convergent infinite series. The small deflection is obtained as a special case.

Keywords: $\widetilde{\mathbf{H}}$-function, A general class of polynomials, Jacobi polynomials, Large and small deflection, Bending stresses.

1. INTRODUCTION

In 1972, Srivastava polynomials [1] defined as:

$$
\begin{equation*}
S_{n}^{m}[x]=\sum_{k=0}^{\left[\frac{n}{m}\right]}(-n)_{m k} A_{n, k} \frac{x^{k}}{k!}, n=0,1,2 \tag{1}
\end{equation*}
$$

where m is an arbitrary positive integer and the coefficients $A_{N, k}(N, k \geq 0)$ are arbitrary constants, real or complex.
In 1987, Hussain[2,3] defined and studied the \tilde{H} function as:

$$
\begin{gather*}
\widetilde{H}_{P, Q}^{M, N}[z]=\widetilde{H}_{P, Q}^{M, N}\left[\begin{array}{l}
Z
\end{array} \begin{array}{l}
\left(a_{j}, \alpha_{j} ; \tau_{j}\right)_{1, N}\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M}\left(b_{j}, \beta_{j} ; \zeta_{j}\right)_{M+1, Q}
\end{array}\right] \\
=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \Psi(\xi) z^{\xi} d \xi \tag{2}
\end{gather*}
$$

where
$\Psi(\xi)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}-\beta_{j} \xi\right) \prod_{j=1}^{N}\left\{\Gamma\left(1-a_{j}+\alpha_{j} \xi\right\}^{\tau_{j}}\right.}{\prod_{j=M+1}^{Q}\left\{\Gamma\left(1-b_{j}+\beta_{j} \xi\right\}^{\zeta_{j}} \prod_{j=N+1}^{P} \Gamma\left(a_{j}-\alpha_{j} \xi\right)\right.}$
for the convergence and existence condition, basic properties of \tilde{H}-function, one may refer to the work by by Buschman and Srivastava [4].
In the present paper the large deflection of a clamped circular plate under non-uniform load following Berger's approximation [5] the plane displacement and the bending stresses for the circular plate are obtained. Applied external pressure p is assumed to be axis symmetric. The pressure $p(r)$ is taken as a function involving Jacobi polynomials, Srivastava polynomials, \tilde{H}-function as
$p(r)=C_{0}\left(1-\frac{r^{2}}{\rho^{2}}\right)^{\alpha} P_{\beta}^{a, b}\left(1-\frac{2 r^{2}}{\rho^{2}}\right) S_{n}^{m}(1-$
$\left.\frac{r^{2}}{\rho^{2}}\right) \widetilde{H}_{P, Q}^{M, N}\left(1-\frac{r^{2}}{\rho^{2}}\right)$
where $P_{\beta}^{a, b}(y)$ is the well known Jacobi polynomials [6] and C_{0} is the arbitrary constant.

2. STATEMENT OF PROBLEM

The approximate equations for a clamped circular plate of flexural rigidity D , Thickness t and radius ρ, undergoing large deflection due to an externally applied non uniform load $p(r)$ following Berger's approximation method [5], may be written as:
$\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}\right)\left(\frac{d^{2} w}{d r^{2}}+\frac{1}{r} \frac{d w}{d r}-V^{2} w\right)=\frac{p}{D}=\psi(r)$.
where V is a normalized constant of integration given by

$$
\begin{equation*}
\frac{d x}{d r}+\frac{x}{r}+\frac{1}{2}\left(\frac{d w}{d r}\right)^{2}=\frac{v^{2} t^{2}}{12} \tag{6}
\end{equation*}
$$

where x is the radial displacement and w is the plate deflection normal to the middle plane of the clamped circular plate.
The problem possesses following boundary conditions

$$
\begin{gather*}
w=\frac{d w}{d r}=0 \quad \text { at } r=\rho \\
x=0 \quad \text { at } r=\rho \tag{7}
\end{gather*}
$$

3. SOLUTION OF THE PROBLEM

Let us take
$w=\sum_{i} A_{j}\left[J_{0}\left(r \lambda_{i}\right)-J_{0}\left(\rho \lambda_{i}\right)\right]$
where λ_{i} being the $i^{\text {th }}$ root of $J_{1}\left(\rho \lambda_{i}\right)=0$.

The boundary conditions (7) are satisfied by above equation.
For the value of w given by equation (8), the equation (5) becomes
$\sum_{i} A_{i} \lambda_{i}^{2}\left(V^{2}+\lambda_{i}^{2}\right) J_{0}\left(r \lambda_{i}\right)=\Phi(r)$
by expanding $\Phi(r)$ in terms of Bessel function and then integrating we get

$$
\begin{align*}
& \int_{0}^{\rho} \sum_{i} A_{i} \lambda_{i}^{2}\left(V^{2}+\lambda_{i}^{2}\right) J_{0}^{2}\left(r \lambda_{i}\right) r d r= \\
& \quad \int_{0}^{\rho} \Phi(r) J_{0}\left(r \lambda_{i}\right) r d r \\
& \quad \text { or } \\
& \frac{1}{2} A_{i} \rho^{2} \lambda_{i}^{2}\left(V^{2}+\lambda_{i}^{2}\right) J_{0}^{2}\left(\rho \lambda_{i}\right)=\int_{0}^{\rho} r \Phi(r) J_{0}\left(r \lambda_{i}\right) d r \\
& \text { Hence } \quad A_{i}=\frac{2 \int_{0}^{\rho} r \Phi(r) J_{0}\left(r \lambda_{i}\right) d r}{\rho^{2} \lambda_{i}^{2}\left(V^{2}+\lambda_{i}^{2}\right) J_{0}^{2}\left(\rho \lambda_{i}\right)} \tag{10}
\end{align*}
$$

Using Erdélyi[7], Equations (1), (2),(3) and the definition of Bessel function and then interchanging the order of summation and integration, we get an interesting integral
$\int_{0}^{1} u^{2 \tau+1}\left(1-u^{2}\right)^{\alpha} P_{\beta}^{a, b}\left(1-2 u^{2}\right) S_{n}^{m}(1-$
$\left.u^{2}\right) \widetilde{H}_{P, Q}^{M, N}\left(1-u^{2}\right) J_{\mu}(u v) d u=$

$$
\begin{align*}
& \sum_{l=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{m l}}{l!} A_{n, l} \sum_{l^{\prime}=0}^{\infty} \sum_{l^{\prime \prime}=0}^{\infty} \frac{(-1)^{l^{\prime}}(-\beta)_{l^{\prime \prime}}}{\beta!l^{\prime}!l^{\prime \prime}!} \\
& \frac{(1+a+b+\beta)_{l^{\prime \prime}}\left(1+\tau+\frac{\lambda}{2}+s\right)_{l^{\prime \prime}}}{\Gamma\left(1+a+l^{\prime \prime}\right)} \frac{\Gamma(1+a+\beta)}{\Gamma\left(\lambda+l^{\prime}+1\right)}\left(\frac{v}{2}\right)^{\lambda+2 l^{\prime}} \\
& . \widetilde{H}_{P+1, Q+1}^{M, N+1}\left[1 \mid\left(b_{j}, \beta_{j}\right)_{1, M}^{(-\alpha-l, 1 ; 1)}\left(b_{j}, \beta_{j}: \zeta_{j}\right)_{M+1, Q}\right. \\
& \quad\left(a_{j}, \alpha_{j} ; \tau_{j}\right)_{1, N}\left(a_{j}, \alpha_{j}\right)_{N+1, P} \tag{11}\\
& \left.\left(-1-\alpha-l-l^{\prime}-l^{\prime \prime}-\tau-\frac{\lambda}{2}, 1: 1\right)\right] .
\end{align*}
$$

Where

$$
\operatorname{Re}(a)>-1, \quad \operatorname{Re}(b)>-1, \quad \operatorname{Re}(\tau)>-1
$$

$$
\operatorname{Re}(\alpha)>-1
$$

$\operatorname{Re}(\lambda)>-\frac{1}{2}, \operatorname{Re}\left(\alpha+\frac{b_{j}}{\beta_{j}}\right)>0, j=1,2, \ldots, m$,
By equations (10) and (11) we have

$$
\begin{gather*}
A_{i}=\frac{C_{0}}{D} \frac{\Gamma(1+a+\beta)}{\beta!\lambda_{i}^{2}\left(V^{2}+\lambda_{i}^{2}\right) J_{0}^{2}\left(\rho \lambda_{i}\right)} \\
. \sum_{l=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{m l}}{l!} A_{n, l} \sum_{l^{\prime}=0}^{\infty} \sum_{l^{\prime \prime}=0}^{\infty} \frac{(-1)^{l^{\prime}}(-\beta)_{l^{\prime \prime}}}{l^{\prime}!l^{\prime \prime}!} \\
. \frac{(1+a+b+\beta)_{l^{\prime \prime}}\left(1+l^{\prime}\right)_{l^{\prime \prime}}}{\Gamma\left(1+a+l^{\prime \prime}\right)}\left(\frac{\rho \lambda_{i}}{2}\right)^{2 l^{\prime}} \\
. \widetilde{H}_{P+1, Q+1}^{M, N+1}\left[1 \mid\left(b_{j}, \beta_{j}\right)_{1, M}\left(b_{j}, \beta_{j}: \zeta_{j}\right)_{M+1, Q}\right. \\
\left(a_{j}, \alpha_{j} ; \tau_{j}\right)_{1, N}\left(a_{j}, \alpha_{j}\right)_{N+1, P} \tag{12}\\
\left(-1-\alpha-l-l^{\prime}-l^{\prime \prime}, 1: 1\right)
\end{gather*} .
$$

By equations (12) and (8), we obtain
$w=R_{1} \sum_{i} \frac{R_{2}}{\left(V^{2}+\lambda_{i}^{2}\right)}\left[J_{0}\left(r \lambda_{i}\right)-J_{0}\left(\rho \lambda_{i}\right)\right]$
where $R_{1}=\frac{C_{0}}{D} \frac{\Gamma(1+a+\beta)}{\beta!}$

$$
\begin{aligned}
& \text { and } \\
& \begin{array}{l}
R_{2}= \\
\lambda_{i}^{2} J_{0}^{2}\left(\rho \lambda_{i}\right) \\
\end{array} \sum_{l=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{m l}}{l!} A_{n, l} \sum_{l^{\prime}=0}^{\infty} \sum_{l^{\prime \prime}=0}^{\infty} \frac{(-1)^{l^{\prime}}(-\beta)_{l^{\prime}}}{l^{\prime}!l^{\prime \prime}!} \\
& . \frac{(1+a+b+\beta)_{l^{\prime \prime}}\left(1+l^{\prime}\right)_{l^{\prime \prime}}}{\Gamma\left(1+a+l^{\prime \prime}\right)}\left(\frac{\rho \lambda_{i}}{2}\right)^{2 l^{\prime}} \\
& \quad . \widetilde{H}_{P+1, Q+1}^{M, N+1}\left[1 \left\lvert\, \begin{array}{c}
(-\alpha-l, 1 ; 1) \\
\left(b_{j}, \beta_{j}\right)_{1, M}\left(b_{j}, \beta_{j}: \zeta_{j}\right)_{M+1, Q} \\
\left(a_{j}, \alpha_{j} ; \tau_{j}\right)_{1, N}\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(-1-\alpha-l-l^{\prime}-l^{\prime \prime}, 1: 1\right)
\end{array}\right.\right]
\end{aligned}
$$

The radial displacement is

$$
\begin{align*}
r x= & \frac{V^{2} t^{2} r^{2}}{24}-\frac{1}{2} \sum_{l^{\prime}=1}^{\infty} A_{i}^{2} \lambda_{i}^{2}\left[\frac { r ^ { 2 } } { 2 } \left\{J_{1}^{\prime 2}\left(r \lambda_{i}\right)+\right.\right. \\
& \left.\left.\left(1-\frac{1}{r^{2} \lambda_{i}^{2}}\right) J_{1}^{2}\left(r \lambda_{i}\right)\right\}\right]- \\
& \frac{1}{2} \sum_{l^{\prime}=1}^{\infty} \sum_{\substack{\infty \\
j=1 \\
l^{\prime} \neq j}} A_{i} A_{j} \lambda_{i} \lambda_{j} \\
& \cdot\left[\frac{\lambda_{i} J_{2}\left(r \lambda_{i}\right) J_{1}\left(r \lambda_{j}\right)-\lambda_{j} J_{2}\left(r \lambda_{j}\right) J_{1}\left(r \lambda_{i}\right)}{\lambda_{i}^{2}-\lambda_{j}^{2}}\right]+C^{\prime} \tag{14}
\end{align*}
$$

where C^{\prime} is the constant of integration.
Equation (14) can be obtained by using equations (6) and (8).

On applying the conditions $u=0$ at $r=\rho$ and using $J_{1}\left(\rho \lambda_{i}\right)=0$, we obtain
$C^{\prime}=-\frac{V^{2} t^{2} \rho^{2}}{24}+\frac{1}{4} \sum_{l^{\prime}=1}^{\infty} A_{i}^{2} \lambda_{i}^{2} \rho^{2} J_{0}^{2}\left(\rho \lambda_{i}\right)$
When $V=0$, the differential equation (5) corresponds to the small deflection equation. By virtue of the equation (13), we get
$w=R_{1} \sum_{i} \frac{R_{2}}{\lambda_{i}^{2}}\left[J_{0}\left(r \lambda_{i}\right)-J_{0}\left(\rho \lambda_{i}\right)\right.$
By taking $r=0$ in the equation (13), the deflection at the centre of plate is obtained as
$w_{0}=R_{1} \sum_{i} \frac{R_{2}}{\left(V^{2}+\lambda_{i}^{2}\right)}\left[1-J_{0}\left(\rho \lambda_{i}\right)\right]$
For the small deflection at centre of the plate, we obtain
$w_{0}=R_{1} \sum_{i} \frac{R_{2}}{\lambda_{i}^{2}}\left[1-J_{0}\left(\rho \lambda_{i}\right)\right]$
Berger, H. M. [5] introduced the bending
stresses at the surface of the circular plate as
$\sigma_{r}=-\frac{6 D}{t^{2}}\left(\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{d w}{d r}\right)$
$\sigma_{\theta}=-\frac{6 D}{t^{2}}\left(v \frac{d^{2} w}{d r^{2}}+\frac{1}{r} \frac{d w}{d r}\right)$
here v is the Poisson's ratio.
The deflection obtained in equation (13) can be used to determine these stresses. Hence the bending stresses at the centre are
$\left(\sigma_{r}\right)_{r=0}=\left(\sigma_{\theta}\right)_{r=0}=\frac{3 D}{t^{2}} R_{1} \sum_{i} \frac{R_{2}}{\left(V^{2}+\lambda_{i}^{2}\right)}[v+1]$
Also the bending stresses at the edge are

$$
\begin{align*}
& \left(\sigma_{r}\right)_{r=\rho}=\frac{6 D}{t^{2}} R_{1} \sum_{i} \frac{R_{2}}{\left(V^{2}+\lambda_{i}^{2}\right)} \lambda_{i}^{2} J_{0}\left(\rho \lambda_{i}\right) \tag{21}\\
& \left(\sigma_{\theta}\right)_{r=\rho}=\frac{6 D}{t^{2}} R_{1} \sum_{i} \frac{R_{2}}{\left(V^{2}+\lambda_{i}^{2}\right)} v \lambda_{i}^{2} J_{0}\left(\rho \lambda_{i}\right) \tag{22}
\end{align*}
$$

4. BEHAVIOUR OF THE FAMILY OF LOAD SHAPE $p(r)$

By (1.4), we have
$p(r)=C_{0}\left(1-\frac{r^{2}}{\rho^{2}}\right)^{\alpha} P_{\beta}^{a, b}\left(1-\frac{2 r^{2}}{\rho^{2}}\right) S_{n}^{m}(1-$ $r 2 \rho 2 H P, Q M, N 1-r 2 \rho 2$

$$
\begin{gather*}
=C_{0} \sum_{l=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{m l}}{l!} A_{n, l} \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \Psi(s)\left(1-\frac{r^{2}}{\rho^{2}}\right)^{\alpha+l+s} \\
\cdot{ }_{2} F_{1}\left[\begin{array}{c}
-\beta, a+b+\beta+1 \\
a+1
\end{array} \frac{r^{2}}{\rho^{2}}\right] d s \tag{23}
\end{gather*}
$$

Following two cases have been considered here (i) On taking $\beta=1$ and $a, b, \alpha>0$ then

$$
\begin{gather*}
p(r)=C_{0} \sum_{\substack{l=0 \\
m}}^{\frac{n}{m}} \frac{(-n)_{m l}}{l!} A_{n, l} \frac{1}{2 \pi i} \\
\cdot \int_{-i \infty}^{i \infty} \Psi(s)\left(1-\frac{r^{2}}{\rho^{2}}\right)^{\alpha+l+s}\left(1-\frac{(a+b+2)}{1+a} \frac{r^{2}}{\rho^{2}}\right) d s \tag{24}
\end{gather*}
$$

At $r=\rho \sqrt{\left(\frac{1+a}{a+b+2}\right)}$ and $r=\rho$, we have $p(r)=$ 0
It shows the dependency of r on a and b and indicates that load shape $p(r)$ changes sign at $r=\rho \sqrt{\left(\frac{1+a}{a+b+2}\right)} \quad$ as is clear from (25).
(ii) On taking $\beta=a=b=0, n=0, \alpha>0$,
$\tau_{j}=\zeta_{j}=1, P=N=0, M=Q=1 ; b_{j}=a_{j}=\alpha_{j}$

$$
=0 ; \beta_{j}=1
$$

we have
$p(r)=C_{0} \sum_{n} \frac{(-1)^{n}}{n!}\left(1-\frac{r^{2}}{\rho^{2}}\right)^{n+\alpha}$
For suitable values of n it is an axially symmetric distribution of the force over the plate acting in the positive direction. We also have a number of force distributions of different intensities for various values of α.

5. CONCLUSION

As the single function $p(r)$ represents several types of loading and therefore the result obtained in the present study is capable of unifying scores of hitherto scattered results in the concerned literature.

REFERENCES

[1] Srivastava H.M., A contour integral involving Fox's Hfunction, Indian J. Math.,Vol-14, pp.1-6 (1972).
[2] Hussian A. A. I., New properties of hypergeometric series derivable from Feynman integrals: I, J. Phys. A: Math. Gen., Vol-20, pp.4109-4117 (1987).
[3] Hussian A. A. I., New properties of hypergeometric series derivable from Feynman integrals
[4] Berger H.M., A new approach to the analysis of Large deflection of Plates, Jour. Appl. Mech. Trans. ASME, Vol.-22, pp.465-472 (1955)
[5] Szego G., Orthogonal polynomials, American mathematical society, Colloquium Publications, Vol.23, revised edition (1959)
[6] Erdélyi A., Table of Integral Transforms, Vol.-2, Mcgraw-Hill, New York, (1954).

