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Abstract- In this manuscript, we apply a new technique 

named the Laplace Decomposition Method (LDM) to 

the fractional differential equation called the Riccati 

equation. Laplace Decomposition Method (LDM) is 

based on the Laplace Transform Method (LTM) and 

Adomain Decomposition Method (ADM). We attempt 

to give an estimated solution to the fractional Riccati 

differential equation using Laplace decomposition 

method and we also observe the behavior of the 

solution obtained. LDM makes it very easy to solve 

linear and non-linear fractional differential equations 

and gives exact solutions in the form of convergence 

series. The graphical interpretation of the behavior of 

the result is also given at the end of this manuscript, 

which is comparable with the results obtained by other 

methods. 
 

Keywords– Fractional Riccati Equations, Laplace 

Decomposition Method, Adomian Decomposition 
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1. INTRODUCTION 

Analytical and numerical answers to fractional-order 

differential equations (FDE) have always drawn the 

interest of researchers due to having applications in 

several areas of pure and applied sciences, 

engineering, and biological sciences also. 

The Italian nobleman Count Jacopo Francesco 

Riccati after whose name the Riccati differential 

equation is named and gained popularity. The book 

of Reid [9] describes the main theories of Riccati 

equation, with implementations to random 

processes, optimal control, and diffusion problems 

[1,3]. Fractional Riccati differential equations is of 

use in various fields, although discussions on the 

numerical methods for these equations are not very 

common. Odibat and Momani [7] explored a 

modified homotopy perturbation method for 

fractional Riccati differential equations. Khader [3] 

researched the fractional Chebyshev finite difference 

method for fractional Riccati differential equations. 

Li [5] have resolved this problem by applying quasi-

linearization technique. 

 

In particular, the Fractional Riccati equation [1], 

being discussed here is represented as  

𝐷𝛾𝑦(𝜀) = 𝑃(𝜀) + 𝑄(𝜀)𝑦(𝜀) + 𝑅(𝜀)𝑦2(𝜀), 𝜖 ∈ 𝑅, 0
< 𝛾 ≤ 1, 𝜀 > 0 

(i) 

where 𝑦(∝)(0) = 𝑔∝, ∝= 0,1,2. . . . . 𝑛 − 1; 𝑃(𝜀), 

𝑄(𝜀)and 𝑅(𝜀) are given functions, 𝑔∝(∝=
0,1,2. . . . . 𝑛 − 1), are random constants and 𝛾 is the 

order of fractional derivative.  

The main of this paper is to save the fractional 

Riccati equation by using the Laplace decomposition 

method. Through this work, we can enhance the 

applications of the Laplace decomposition method 

and fractional Riccati equation. 

2. PRELIMINARIES AND NOTATIONS 

Definition 1 The fractional-order Riemann-Liouville 

derivative of the function 𝑦(𝜀) for 𝜀 and order 𝛾 0 

is defined as [6] 

𝐷𝜀
𝛾

𝑦(𝜀)

=
1

𝛤(𝑛 − 𝛾)

𝑑𝑛

𝑑𝜀𝑛
∫ (𝜀)𝑛−𝛾−1𝑦(𝑢)𝑑𝑢,

𝑡

0

           

𝑛 − 1 < 𝛾 ≤ 𝑛. 
(ii) 

Definition 2 The fractional-order Caputo derivative 

of the function 𝑦(𝜀) for 𝜀  and order 𝛾 0 is defined 

as [6] 

𝐷𝜀
𝛾

𝑦(𝜀) =
1

𝛤(𝑛 − 𝛾)
∫ (𝜀)𝑛−𝛾−1𝑦𝑛(𝑢)𝑑𝑢,

𝑡

0

          𝑛

− 1 < 𝛾 ≤ 𝑛. 
(iii) 

Definition 3 The Laplace transform of 𝐷𝜀
𝛾

𝑦(𝜀) is 

defined as [5,6] 

𝐿[𝐷𝜀
𝛾

𝑦(𝜀)] = 𝑠𝛾𝐿[𝑦(𝜀)] − ∑ 𝑠𝛾−𝜃−1

∝−1

𝜃=0

𝑦(𝜃)(0) ,    

∝ −1 < 𝛾 ≤∝ 

(iv) 

3. LAPLACE DECOMPOSITION METHOD 

(LDM) 

The Laplace Transform and Adomian decomposition 

method together form the Laplace Decomposition 

Method (LDM) [10]. It is a mathematical tool that 

can be applied to solve linear, nonlinear, ordinary, 
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and partial differential equations and fractional-order 

nonlinear differential equations also [2,4,11]. 

To illustrate LDM, consider the equation 

𝐷𝜀
𝛾

𝑦(𝜀) + 𝑃𝑦(𝜀) + 𝑄𝑦(𝜀) = 0   (v) 

where 𝐷𝜀
𝛾

𝑦(𝜀) is the fractional-order Caputo 

derivative of order 𝛾, ∝ −1 < 𝛾 ≤∝, ∝∈ 𝑁  , P is 

the linear operator and Q is the non-linear operator 

and  

𝑦(𝜀) = 𝑦(0) at 𝜀 =0                      (vi) 

Taking Laplace transform of (v), we have 

 

𝐿(𝐷𝜀
𝛾

𝑦(𝜀) + 𝑃𝑦(𝜀) + 𝑄𝑦(𝜀)) = 0 

which because of (vi) gives  

 

𝐿[𝑦(𝜀)] =
1

𝑠𝛾
∑ 𝑠𝛾−𝜃−1𝑦𝜃(0) −

∝−1

𝑛=0

1

𝑠𝛾
𝐿[𝑃𝑦(𝜀)

+ 𝑄𝑦(𝜀)], 
(vii) 

Now taking inverse Laplace transform of (vii) we get  

 

𝑦(𝜀) = 𝐿−1 {
1

𝑠𝛾
∑ 𝑠𝛾−𝜃−1𝑦𝜃(0)∝−1

𝑛=0 −
1

𝑠𝛾 𝐿[𝑃𝑦(𝜀) +

𝑄𝑦(𝜀)]}, 

(viii) 

By using the initial condition, we arrive at 

𝑦(𝜀) = 𝑦(0) − 𝐿−1 {
1

𝑠𝛾
𝐿[𝑃𝑦(𝜀) + 𝑄𝑦(𝜀)]} 

(ix) 

Now we represent the solution of (ix) in terms of an 

infinite series as 

𝑦(𝜀) = ∑ 𝑦𝑖(𝑡)

∞

𝑖=0

= 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯

+ 𝑦𝑖(𝑡) + ⋯ 

(x) 

here 𝑄𝑦(𝜀)𝑖𝑠 𝑎 nonlinear operator represented as  

𝑄𝑦(𝜀) = ∑ 𝐴𝑖
∞
𝑖=0      be (xi) 

and Adomian polynomial  𝐴𝑖 is defined as  

𝐴𝑖 =
1

𝑖!
[

𝑑𝑖

𝑑𝛿𝑖
{𝑄 ∑ (𝛿𝑖𝑦𝑖)

∞

𝑖=0
}]

𝜀=0

,    𝑖 = 0,1,2, …, 

(xii) 

where 

𝑦0(𝑡) = 𝑦(0),      (xiii) 

𝑦1(𝑡) = −𝐿−1 {
1

𝑠𝛾
𝐿[𝑃𝑦0(𝑡) + 𝐴0]}, 

(xiv) 

and   𝑦𝑖+1(𝑡) = −𝐿−1 {
1

𝑠𝛾 𝐿[𝑃𝑦𝑖(𝑡) + 𝐴𝑖]} ,   𝑖 ≥ 1. 

(xv) 

4. MAIN RESULTS 

 

In this section we consider the following two 

problems to illustrate the application of LDM to 

obtain the solution to Fractional Riccati differential 

equations: 

Problem 1: Consider the Fractional Riccati 

differential equation 

𝐷𝜀
𝛾

𝑦(𝜀) = −𝑦2(𝜀) + 1,     0 < 𝜀 ≤ 1 

(xvi) 

with primary condition 

𝑦(0) = 𝑦0 = 0     (xvii) 

Taking Laplace transform of (xvi) and then using 

(xvii), we get 

𝐿[𝑦(𝜀)] =
1

𝑠𝛾+1 −
1

𝑠𝛾 𝐿[𝑦2(𝜀)]    (xviii) 

which on taking inverse Laplace transform gives 

𝑦(𝜀) = 𝐿−1 {
1

𝑠𝛾+1 −
1

𝑠𝛾 𝐿[𝑦2(𝜀)]}   (xix) 

Now, on applying Laplace Decomposition Method, 

we arrive at 

𝑦0(𝜀) = 𝑦(0) =
𝜀𝛾

𝛤[𝛾+1]
    (xx) 

𝑦1(𝜀) = −𝐿−1
1

𝑠𝛾
(𝐿[𝑦0

2(𝜀)]) 

𝑦1(𝜀) = −
𝛤[2𝛾 + 1]𝜀3𝛾

[𝛤[𝛾 + 1]]
2

𝛤[3𝛾 + 1]
 

(xxi) 

𝑦2(𝜀) = −𝐿−1 (
1

𝑠𝛾
𝐿[2𝑦0𝑦1]) 

𝑦2(𝜀) =
2𝛤[2𝛾 + 1]𝛤[4𝛾 + 1]𝜀5𝛾

[𝛤[𝛾 + 1]]
3

𝛤[3𝛾 + 1]𝛤[5𝛾 + 1]
 

(xxii) 

Thus, the solution can be expressed in the series form 

as  

𝑦(𝜀) = 𝑦0(𝜀) + 𝑦1(𝜀) + 𝑦2(𝜀) + ⋯ + 𝑦𝑖(𝜀) + ⋯ 

                     =
𝜀𝛾

𝛤[𝛾+1]
−

𝛤[2𝛾+1]𝜀3𝛾

[𝛤[𝛾+1]]
2

𝛤[3𝛾+1]
+

2𝛤[2𝛾+1]𝛤[4𝛾+1]𝜀5𝛾

[𝛤[𝛾+1]]
3

𝛤[3𝛾+1]𝛤[5𝛾+1]
 + … 

(xxiii) 

which on taking  𝛾 = 1, gives 

𝑦(𝜀) = 𝑙𝑖𝑚
𝑛→∞

𝑦𝑛(𝜀) = 𝜀 −
𝜀3

3
 +  

2

15
𝜀5 + . .. 

(xxiv) 

Problem 2: Consider the Fractional Riccati 

differential equation 

𝐷𝜀
𝛾

𝑦(𝜀) = 2𝑦(𝜀) − 𝑦2(𝜀) + 1,     0 < 𝜀 ≤ 1 

(xxv) 

with primary condition 

𝑦(0) = 𝑦0 = 0     (xxvi) 

Taking Laplace transform of (xxv) and then using 

(xxvi), we get 

𝐿[𝑦(𝜀)] =
1

𝑠𝛾+1
+

1

𝑠𝛾
𝐿[2𝑦(𝜀) − 𝑦2(𝜀)] 

(xxvii) 

which on taking inverse Laplace transform gives 

𝑦(𝜀) = 𝐿−1 {
1

𝑠𝛾+1
+

1

𝑠𝛾
𝐿[2𝑦(𝜀) − 𝑦2(𝜀)]} 

(xxviii) 
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Now, on applying Laplace Decomposition Method, 

we arrive at 

𝑦0(𝜀) = 𝑦(0) =
𝜀𝛾

𝛤[𝛾 + 1]
 

(xxix) 

𝑦1(𝜀) = 𝐿−1 (
1

𝑠𝛾
𝐿[2𝑦0(𝜀) − 𝑦0

2(𝜀)]) 

𝑦1(𝜀) = 2
𝜀2𝛾

𝛤[2𝛾 + 1]
−

𝛤[2𝛾 + 1]𝜀3𝛾

[𝛤[𝛾 + 1]]
2

𝛤[3𝛾 + 1]
 

(xxx) 

𝑦2(𝜀) = −𝐿−1 (
1

𝑠𝛾
𝐿[2𝑦1 − 2𝑦0𝑦1]) 

𝑦2(𝜀)

= 4
𝜀3𝛾

𝛤[3𝛾 + 1]
−

2𝛤[2𝛾 + 1]𝜀4𝛾

[𝛤[𝛾 + 1]]
2

𝛤[4𝛾 + 1]

−
4𝛤[3𝛾 + 1]𝜀4𝛾

𝛤[𝛾 + 1]𝛤[2𝛾 + 1]𝛤[4𝛾 + 1]

+
2𝛤[2𝛾 + 1]𝛤[4𝛾 + 1]𝜀5𝛾

[𝛤[𝛾 + 1]]
3

𝛤[3𝛾 + 1]𝛤[5𝛾 + 1]
 

(xxxi) 

Thus, the solution can be expressed in the series form 

as  

𝑦(𝜀) = 𝑦0(𝜀) + 𝑦1(𝜀) + 𝑦2(𝜀) + ⋯ + 𝑦𝑖(𝜀) + ⋯ 

=
𝜀𝛾

𝛤[𝛾 + 1]
+ 2

𝜀2𝛾

𝛤[2𝛾 + 1]

−
𝛤[2𝛾 + 1]𝜀3𝛾

[𝛤[𝛾 + 1]]
2

𝛤[3𝛾 + 1]
 + 4

𝜀3𝛾

𝛤[3𝛾 + 1]

−
2𝛤[2𝛾 + 1]𝜀4𝛾

[𝛤[𝛾 + 1]]
2

𝛤[4𝛾 + 1]

−
4𝛤[3𝛾 + 1]𝜀4𝛾

𝛤[𝛾 + 1]𝛤[2𝛾 + 1]𝛤[4𝛾 + 1]

+
2𝛤[2𝛾 + 1]𝛤[4𝛾 + 1]𝜀5𝛾

[𝛤[𝛾 + 1]]
3

𝛤[3𝛾 + 1]𝛤[5𝛾 + 1]
+. .. 

(xxxii) 

which on taking  𝛾 = 1, gives 

𝑦(𝜀) = 𝑙𝑖𝑚
𝑛→∞

𝑦𝑛(𝜀) = 𝜀 + 𝜀2 +
𝜀3

3
 −

2𝜀4

3
+

 
2

15
𝜀5 + . ..                (xxxiii) 

 

5. GRAPHICAL REPRESENTATION 

The graphical representation of the equations (xxiii) 

and (xxxii) are showing with figure 1 and figure 2 

with different values of 𝛾 and 𝜀 are as under: 

 

 

 

 

 

 
 

Figure 1: The Graphical representation of equation (xxiii) for 

different value of  and  

 

Figure 2: The Graphical representation of equation (xxxii) for 

different value of  and  

6. CONCLUSION 

The present paper presents a novel approach to 

obtaining the solution of fractional order Riccati 

equation by applying the Laplace Decomposition 

Method (LDM). The graphical representations of the 

solutions obtained depict the behavior of the results. 
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