
Usha Ameta¹, Swati Joshi² and G L Talesara³

¹Department of Chemistry, M. L. Sukhadia University, Udaipur, India
²Department of Chemistry, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India
E-mail: swtojha@gmail.com

Received 21.02.2022, received in revised form 11.05.2022, accepted 11.05.2022
DOI: 10.47904/IJSKIT.12.1.2022.86-94

Abstract- A number of 3-N-ethoxyphthalimido-5-amino-2-oxo-7-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl) -1,3-thiazolo[4,5-d]pyrimidines [5a-f] and 6-N-ethoxyphthalimido-5-oxo 3-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl)-3,3a-dihydro[1,3]thiazole [4,5-c]isoxazoles [7a-f] derivatives have been proposed to synthesize from the condensation of phthalimidoxyethyl bromide with [4a-f] and [6a-f], respectively. The compounds [4a-f] and [6a-f] in turn have been prepared by the reaction of 5-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl)-1,3 thiazolidine -2,4-dione [3a-f] with guanidine nitrate and hydroxylamine hydrochloride, respectively. All the synthesized compounds were characterized by carbon and nitrogen elemental analysis and IR, 1H, NMR and mass spectral studies. All the final derivatives of titled compounds have been tested for their antifungal activities against Candida albicans and Aspergillus fumigatus and antibacterial activities against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis comparing with standard drugs.

Keywords- Iminothiazolidinone; Cyclisation; Condensation; Alkoxyphthalimides.

1. INTRODUCTION

The importance of various five & six-membered and fused heterocyclic derivatives is very well established in the world of organic synthesis and medicinal chemistry. It is well known that a number of thiazolidinone and respective compounds are indulged in a broad range of biological activities, i.e., anticonvulsant [1], anti-inflammatory [2,3], hypnotic [4], amoebicidal [5], analgesic [6], anti-AIDS [7] properties etc. Nitrogen-containing heterocyclic compounds i.e. pyrimidine play an important role in the living process. Besides the naturally occurring pyrimidines, a variety of synthetic pyrimidine derivatives are of clinical importance and are used in treating a range of diseases i.e., anticancer [8-10], anti-HIV [11,12], anti-viral against herpes simplex virus (HSV) [13], analgesic, anticonvulsant and antiparkinsonian [14]. Isoxazole derivatives have been found to show anticancer [15], antibacterial [16], and beneficial effects on neuronal disorders [17-20]. Various alkoxyphthalimide derivatized heterocycles are also found to hold anticonvulsant [21], anticancer [22], antimalarial [23,24] and anti-microbial [25-27] activities. By reviewing above-mentioned potent activities of these combinational heterocycles, it was planned to design a complex molecular framework. In this paper, we have synthesized various ethoxyphthalimide derivatives by first combining the thiazolidinone moiety with pyrimidine and isoxazole through separate pathways.
Figure 1. Reaction scheme showing the synthesis of 1,3-Thiazolidin-2,4-dione and its derivatives.
2. RESULT AND DISCUSSION

1,3-Thiazolidin-2, 4-dione [2] was prepared utilizing the reported method. It was prepared by the reaction between thiourea and 2-chloroacetic acid in absolute alcohol, here 20% KOH was used to achieve the imino group hydrolysis. Formation of compound [2] was confirmed by IR spectral data in which peak of C=O at 1695 cm$^{-1}$
and peak of N-H showed at 3425.9 cm\(^{-1}\). The reaction of the compound [2] with various 4-substituted phenyl/2-furyl/3,4-disubstituted phenyl aldehydes in the presence of acetic acid produced α, β-unsaturated moiety in the resulting 5-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl)-1,3-thiazolidin-2,4-dione [3a-f] in basic media of sodium acetate. Compound formation for example [3a] was characterized by the shift in carbonyl peak at 1690 cm\(^{-1}\), because of α,β-unsaturated moiety of carbonyl group. In NMR spectra, compound 3a exhibited the new singlet at δ 6.0 (C=CH-Ar) and disappearance of singlet at δ 3.5 (active CH\(_2\)) as was present in the precursor, also confirmed its formation.

In the first reaction route, compounds 5-amino-2-oxo-7-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl)-[1,3] thiazolo [4,5-d]pyrimidine [4a-f] have been synthesized by the cycloaddition of [3a-f] in the presence of alcoholic sodium hydroxide with guanidine nitrate (Figure 2). Formation of the expected compound was confirmed by \(^1\)HNMR signal of the NH\(_2\) and NH group at δ 5.42 (s) and δ 9.5, respectively. The furnished compounds [4a-f] were condensed with o-bromoalkoxyphthalimide [1] in presence of pyridine to give titled compound. Synthesis of 3-N-ethoxyphthalimido-5-amino-2-oxo-7-(4-substituted phenyl)-2-oxo [1,3] thiazolo [4,5-d] pyrimidine [5a-f]. Characteristic IR peak for N-O and C=O appeared at 1382 and 1087 cm\(^{-1}\) while \(^1\)HNMR peak of NH at δ 9.5 disappeared in the final compound, confirming the formation of [5a-f].

In the second reaction route, the compounds [3a-f] underwent cycloaddition reaction with hydroxylamine hydrochloride to afford 3-(4-substituted phenyl/2-furyl/3,4-disubstituted phenyl)-3,3a-dihydro [1,3] thiazolo [4,5-c] isoxazol-5(6H)-one [6a-f]. The structure assignment of compound [6a] was supported by the appearance of a new band at 1593 cm\(^{-1}\) for N-O group and at 1640 cm\(^{-1}\) for C=N str in the IR region. The structure of compound [6a-f] was further established by \(^1\)HNMR spectral data. The \(^1\)HNMR spectra of compound [6a-f] in the region δ 6.53 showed the absence of a C=CH-Ar proton shifting, thereby suggesting a cycloidal structure for compound [6a-f]. Treatment of [6a-f] with o-bromoethoxyphthalimide [1] afforded the corresponding condensed product 6-N-ethoxyphthalimido-5-oxo-3-(4-substituted phenyl/2 -furyl/3,4-disubstituted phenyl)- 3,3a-dihydro [1,3] thiazolo [4,5-c] isoxazole [7a-f]. Structure elucidation of compound [7a] was done on the basis of IR and proton NMR studies. In IR, new bands appeared at 1733 cm\(^{-1}\) and 1204 cm\(^{-1}\) because of CO-N-CO and C-N stretching, and a band at 3422 cm\(^{-1}\) disappeared corresponding to the N-H str as was present in [6a]. The \(^1\)HNMR spectrum of compound [7a] showed a doublet at δ 3.59 for NCH\(_2\) proton and disappearance of singlet at 9.76 δ for NH proton.

Physical, analytical and elemental analysis data of all the newly synthesized compounds are depicted in Table 1 Characterization data in the form of IR, Proton NMR and Mass spectra of the synthesized compounds are tabulated in Table 2.

Table 1 Physical, analytical and elemental analysis of synthesized compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mol. Formula</th>
<th>Mol. wt.</th>
<th>m.p. °C</th>
<th>Yield %</th>
<th>C (%)</th>
<th>H (%)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>C({12})H({10})N(_3)O(_3)S</td>
<td>274</td>
<td></td>
<td>68</td>
<td>52.54 (52.30)</td>
<td>3.67 (3.40)</td>
<td>20.43 (20.21)</td>
</tr>
<tr>
<td>4b</td>
<td>C(_{10})H(_8)N(_2)O(_2)S</td>
<td>244</td>
<td>274</td>
<td>72</td>
<td>54.09 (53.99)</td>
<td>3.30 (3.01)</td>
<td>22.94 (22.70)</td>
</tr>
<tr>
<td>4c</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>287</td>
<td>270</td>
<td>66</td>
<td>54.34 (54.15)</td>
<td>4.56 (4.20)</td>
<td>24.37 (24.30)</td>
</tr>
<tr>
<td>4d</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>290</td>
<td>285</td>
<td>64</td>
<td>49.65 (49.55)</td>
<td>3.47 (3.21)</td>
<td>19.30 (19.10)</td>
</tr>
<tr>
<td>4e</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>278</td>
<td>282</td>
<td>60</td>
<td>47.40 (47.09)</td>
<td>2.53 (2.31)</td>
<td>20.10 (19.85)</td>
</tr>
<tr>
<td>4f</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>234</td>
<td>240</td>
<td>68</td>
<td>46.15 (46.01)</td>
<td>2.58 (2.46)</td>
<td>23.92 (23.72)</td>
</tr>
<tr>
<td>5a</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>463</td>
<td>>300</td>
<td>63</td>
<td>57.01 (56.95)</td>
<td>3.70 (3.52)</td>
<td>15.11 (15.02)</td>
</tr>
<tr>
<td>5b</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>433</td>
<td>290</td>
<td>75</td>
<td>58.19 (58.09)</td>
<td>3.49 (3.28)</td>
<td>16.16 (16.09)</td>
</tr>
<tr>
<td>5c</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>476</td>
<td>288</td>
<td>68</td>
<td>57.97 (57.81)</td>
<td>4.23 (4.15)</td>
<td>17.64 (17.53)</td>
</tr>
<tr>
<td>5d</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>479</td>
<td>298</td>
<td>63</td>
<td>55.11 (55.02)</td>
<td>3.57 (3.48)</td>
<td>14.61 (14.49)</td>
</tr>
<tr>
<td>5e</td>
<td>C(_{12})H(_8)N(_2)O(_2)S</td>
<td>467</td>
<td>>300</td>
<td>69</td>
<td>53.91 (53.80)</td>
<td>3.02 (2.95)</td>
<td>14.97 (14.89)</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Comp</th>
<th>IR cm⁻¹</th>
<th>Proton NMR and Mass spectra of the newly synthesized compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3425 [N-H str], 1695 [C=O str], 1595.3 [C=N str], 672 [C-S-C bend]</td>
<td>10.2 [s, 1H, NH], 7.3 [s, 2H, CH₃]</td>
</tr>
<tr>
<td>3a</td>
<td>3375 [N-H], 2830.9 [C-H asymm. str., CH₃], 1690 [C=O str], 1595 [C=N str], 773 [C-S-C bend], 1302.9 [O-CH₃ str]</td>
<td>9.9 [s, 1H, NH], 7.9-7.6 [m, 4H, Ar-H], 6.0 [s, 1H, C=CH-Ar]</td>
</tr>
<tr>
<td>4a</td>
<td>3408.7 [N-H str], 3021.7 [Ar-H str], 2833.9 [C=H, CH₃ str], 1735 [C=O str], 1673.9 [NH str], 1603.1 [N=N str], 1254.1 [O=CH str], 1148.1-1208.6 [C=N, C-NH₂], 1033 [C-S], 811.1 [C-H (para)sub benz], 711.6 [C-S-C]</td>
<td>9.6 [s, 1H, NH], 8.0-6.63 [m, 4H, Ar-H], 6.47 [s, br., 2H, NH₂], 3.82 [s, 3H, OCH₃]</td>
</tr>
<tr>
<td>4b</td>
<td>3415.0 [N-H], 3025.0 [Ar-H], 1740 [C=O], 1670 [NH₂ bend], 1570 [C=N], 1160 [C-N], 1040 [C-S], 715 [C-S-C]</td>
<td>9.73 [s, 1H, NH], 07-7.00 [m, 5H, Ar-H], 6.49 [s, br., 2H, NH₂]</td>
</tr>
<tr>
<td>4c</td>
<td>3430 [N-H], 3032 [Ar-H], 1740 [C=O], 1672-1603 [NH₂ bend], 1572 [C=N], 1030 [C-S], 709 [C-S-C]</td>
<td>9.57 [s, 1H, NH], 8.3-7.25 [m, 4H, Ar-H], 6.47 [s, br., 2H, NH₂], 3.15 [s, 6H, N (CH₃)₂]</td>
</tr>
<tr>
<td>4d</td>
<td>3502 [Br, OH], 3409 [N-H], 3028 [Ar-H], 2840 [C=H, CH₃], 1716 [C=O], 1676 [NH₂], 1573 [C=N], 1023 [C-S], 699 [C-S-C]</td>
<td>9.70 [s, 1H, NH], 8.05-6.55 [m, 3H, Ar-H], 6.43 [s, br., 2H, NH₂], 4.79 [br.1H, OH], 3.87 [s, 3H, OCH₃]</td>
</tr>
<tr>
<td>4e</td>
<td>3402 [N-H], 3023 [Ar-H], 1710 [C=O], 1664 [NH₂ bend], 1580 [C=N], 1019 [C-S], 750 [Ar-Cl], 697 [C-S-C]</td>
<td>9.55 [s, 1H, NH], 8.01-6.61 [m, 4H, Ar-H], 6.43 [s, br., 2H, NH₂]</td>
</tr>
<tr>
<td>4f</td>
<td>3463 [N-H], 3033 [C-H, CH=CH cyclic], 1778 [C=O], 1682 [NH₂ bend], 1542 [C=N], 1285 [C-N], 1018 [C-O], 755 [C-S-C]</td>
<td>9.51 [s, 1H, NH], 7.03-6.34 [m, 3H, Ar-H], 6.41 [s, br., 2H, NH₂]</td>
</tr>
<tr>
<td>5a</td>
<td>3333 [N-H], 3021 [C-H, Ar-H], 2945-2840 [C-H, CH₃], 1731,1698 [C=O str], 1565 [C=N str], 1380 [N-O str], 1082 [C-O str], 683 [C-S-C]</td>
<td>7.95-6.58 [m, 8H, Ar-H], 6.43 [s, br., 2H, NH₂], 3.48 [t, 2H, NCH₃], 2.39 [t, 2H, OCH₃], 3.80 [t, 3H, OCH₂]</td>
</tr>
<tr>
<td></td>
<td>463 [M⁺], 273, 236, 190, 177, 136, 132, 107, 92</td>
<td>Mass</td>
</tr>
<tr>
<td>5b</td>
<td>3443 [N-H], 3025 [C-H, CH₃], 2951 [C=H, CH₃], 1735,1698 [C=O str], 1590 [C=N str], 1385 [N-O str], 1085 [C-O str], 690 [C-S-C]</td>
<td>9.57-6.95 [m, 9H, Ar-H], 6.48 [s, br., 2H, NH₂], 3.50 [t, 2H, NCH₃], 2.43 [t, 2H, OCH₂]</td>
</tr>
<tr>
<td></td>
<td>433 [M⁺], 273, 236, 223, 190, 177, 132, 106, 77</td>
<td>Mass</td>
</tr>
<tr>
<td>5c</td>
<td>3430 [N-H], 3017 [C-H, Ar-H], 2940-2845 [C-H, CH₃], 1732,1683 [C=O str], 1560 [C=N str], 1383 [N-O str], 1076 [C-O str], 673 [C-S-C]</td>
<td>8.18-7.20 [m, 8H, Ar-H], 6.45 [s, br., 2H, NH₂], 3.40 [t, 2H, NCH₃], 2.33 [t, 2H, OCH₂], 2.19 [s, 6H, NCH₂]</td>
</tr>
<tr>
<td></td>
<td>476 [M⁺], 273, 236, 177, 148, 132, 120</td>
<td>Mass</td>
</tr>
<tr>
<td>5d</td>
<td>3499 [O-H, br.], 3428 [N-H], 3019 [C-H, Ar-H], 2945-2842 [C-H, CH₃], 1722,1681 [C=O str], 1563 [C-N str], 1380 [N-O str], 1080 [C-O str], 680 [C-S-C]</td>
<td>4f</td>
</tr>
</tbody>
</table>
3. EXPERIMENT

3.1. Materials and Instruments

For characterization of compounds FTIR IR RX1
Perkin Elmer spectrophotometers (for IR) and
Bruker DRX-300 MHz spectrometer (CDCl3) (for
NMR) and a MICROMASS QUATTRO II triple
quadrupole mass spectrometer having a JASCO-PU-
980 HPLC pump (for mass) connected was used.
Phthalimidoxy ethyl bromide [1] was prepared by
the literature method using o,p'-dibromoethane and
N-hydroxyphthalimide in the solvent Dimethyl
formamide and triethylamine was used as base [28].
3.2. Synthesis of 1,3-thiazolidin-2,4-dione (2)
A reaction mixture was made by mixing chloroacetic acid (0.01 mole) and thiourea (0.01 mole) in absolute alcohol and refluxed for 3-4 hr on heating metal. After this, the reaction substance was cooled, resulting in a solid. After filtration, the residue was dissolved in boiling water, thus separated from HCl (a bi-product). After 24 hr, the white shining crystals formed were filtered refluxed in aqueous KOH (20%) for 2-3 hr. The reaction product was further kept at room temperature for some time and then poured into dilute acetic acid (1:1). The final product was dried and recrystallized by absolute alcohol.

3.3. Synthesis of 5-(4-methoxybenzylidene)-1,3-thiazolidin-2,4-dione (3a)
4-Methoxybenzylidene (0.01 mole) was dissolved in glacial acetic acid with compound [2] (0.01 mole) and sodium acetate was used as a base. This reaction mixture was refluxed for 6-8 hrs. After the completion of the reaction, the reaction substance was transferred into crushed ice and filtered, resulting into a yellow colored solid. This solid was then washed and recrystallized by absolute alcohol Compounds [3b-f] were synthesized in a similar way.

3.4. Synthesis of 5-amino-2-oxo-7-(4-methoxyphenyl)-1,3-thiazolo [4,5-d] pyrimidine (4a)
Compound 5-(4-methoxybenzylidene)-1,3-thiazolidin-2,4-dione [3a] (0.01 mole) was dissolved in absolute ethanol and teated with guanidine nitrate (0.01 mole). During the reflux, 40% aqueous NaOH solution was added to it. The reaction mixture was kept on reflux for 6-7 hrs. Afterwards, the solution is poured into ice-cold water. The orange yellow coloured product was filtered, dried washed and recrystallized from absolute ethanol. Compounds [4b-f] were prepared with minor modification in reaction time.

3.5. Synthesis of 3-N-ethoxyphthalimido-5-amino-2-oxo-7-(4-methoxyphenyl)-2-oxo [1,3] thiazolo [4,5-d] pyrimidine (5a)
To a solution of compound 5-amino-2-oxo-7-(4-methoxyphenyl)-1,3 thiazolo [4,5-d] pyrimidine [4a] (0.01 mole) in absolute ethanol, pyridine (0.02 mole) as base was added portion-wise with constant stirring. Further, phthalimidoxyethyl bromide [1] (0.01 mole) was added and reflux is continued for 12-13 hrs. A solid was obtained upon cooling, which was treated with DMF and recrystallized from ethanol. In a similar way, other derivatives [5b-f] were synthesized using appropriate reactants.

3.6. Synthesis of 3-(4-methoxyphenyl)-3,3a-dihydro [1,3] thiazolo [4,5-c] isoxazol-5(6H)-one (6b)
To a boiling solution of compound [3a] (0.01 mole) in absolute ethanol, hydroxylamine hydrochloride (0.01 mole) was added. In a separate flask sodium acetate (0.02 mole) is dissolved in acetic acid. Both the solutions are mixed together and refluxed for 7-8 hr. The resultant mixture was added into ice cold water with stirring. The colored solid obtained was filtered and recrystallized from absolute ethanol. Utilizing proper reactants and slight changes in the reflux time, compounds [6b-f] were synthesized in a similar method.

3.7. Synthesis of 6-N-ethoxypthalimido-5-oxo-3-(4-methoxyphenyl)-3,3a-dihydro [1,3] thiazolo [4,5-c] isoxazole (7a)
To a magnetically stirred solution of 3-(4-methoxyphenyl)-3,3a-dihydro [1,3] thiazolo[4,5-c] isoxazol-5(6H)-one [6a] (0.01 mole) in abs. ethanol, phthalimidoxy ethyl bromide [1] (0.01) and pyridine (0.02) as base was added and refluxed for 14-15 hr. The solid thus obtained after cooling was filtered with vacuum pump, dried and recrystallized from absolute alcohol. Compounds [7b-f] were synthesized in an analogous way by utilizing minor changes in reflux time.

4. PHARMACOLOGICAL SCREENING
All compounds were tested in vitro for antibacterial and antifungal activities using 500 μg/mL concentrations in DMF using cup or well method with respect to standard drug i.e. Ciprofloxacin and Ampthoterin B respectively. Antibacterial testing was carried out against, gram +ve Bacterial strain Bacillus subtilis and gram –ve strains Klebsiella pneumoniae, Proteus mirabilis and Escherichia coli. Compounds were assayed for their antifungal activities against fungal species of Aspergillus fumigatus (MTCC 2550) and Candida albicans (MTCC 227). Comparative study was carried out in the form of measurement of zone of inhibition (in mm) along with activity index calculation between tested compounds and standard drugs. Compound 5e and 7e showed promising activity against B. subtilis, whereas activity of 5a, 5e and 5f was comparable with ciprofloxacin against E. coli. Compound 7e exhibited highest activity amongst all the other derivatives of pyrimidines and isoxazoles against P. mirabilis. All the final compounds showed moderate to high activity against both the fungal strains. Moreover, the result of antifungal activity for A. fumigatus was 2-3 folds higher than that of the standard drug.

Compounds have been tested for antiviral screening in CRFK, Hel, HeLa and Vero cell
cultures. On the basis of MIC values compounds show no significant activity, all the screened compounds showed activity but rather on high concentration. Therefore, any of the compounds at a concentration of the standard compound did not demonstrate significant antiviral activity.

Antimicrobial testing results of all the final derivatives have been depicted in Compounds have shown less to moderate activity, but it can be concluded that synthesized compounds are better antifungal agents.

Table 3: Antimicrobial assay of final derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>B. subtilis</th>
<th>E. coli</th>
<th>K. pneumoniae</th>
<th>P. mirabilis</th>
<th>C. albicans</th>
<th>A. fumigatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>2 (0.181)</td>
<td>12 (1.00)</td>
<td>6 (0.50)</td>
<td>7 (0.50)</td>
<td>10 (0.83)</td>
<td>26 (4.33)</td>
</tr>
<tr>
<td>5b</td>
<td>3 (0.272)</td>
<td>10 (0.83)</td>
<td>5 (0.41)</td>
<td>9 (0.64)</td>
<td>8 (0.66)</td>
<td>23 (3.83)</td>
</tr>
<tr>
<td>5c</td>
<td>4 (0.363)</td>
<td>9 (0.75)</td>
<td>7 (0.58)</td>
<td>10 (0.71)</td>
<td>6 (0.50)</td>
<td>20 (3.33)</td>
</tr>
<tr>
<td>5d</td>
<td>5 (0.454)</td>
<td>11 (0.92)</td>
<td>4 (0.33)</td>
<td>4 (0.28)</td>
<td>6 (0.50)</td>
<td>17 (2.83)</td>
</tr>
<tr>
<td>5e</td>
<td>9 (0.818)</td>
<td>13 (1.08)</td>
<td>13 (0.92)</td>
<td>9 (0.75)</td>
<td>14 (2.33)</td>
<td></td>
</tr>
<tr>
<td>5f</td>
<td>4 (0.363)</td>
<td>12 (1.00)</td>
<td>12 (1.00)</td>
<td>8 (0.57)</td>
<td>12 (1.00)</td>
<td>13 (2.16)</td>
</tr>
<tr>
<td>5a</td>
<td>6 (0.545)</td>
<td>9 (0.75)</td>
<td>8 (0.72)</td>
<td>10 (0.71)</td>
<td>11 (0.91)</td>
<td>20 (3.33)</td>
</tr>
<tr>
<td>5b</td>
<td>5 (0.454)</td>
<td>8 (0.66)</td>
<td>11 (0.50)</td>
<td>10 (0.78)</td>
<td>15 (0.83)</td>
<td>14 (2.50)</td>
</tr>
<tr>
<td>5c</td>
<td>4 (0.363)</td>
<td>5 (0.41)</td>
<td>9 (0.75)</td>
<td>8 (0.57)</td>
<td>13 (1.08)</td>
<td>10 (1.66)</td>
</tr>
<tr>
<td>5d</td>
<td>6 (0.545)</td>
<td>7 (0.58)</td>
<td>3 (0.25)</td>
<td>12 (0.85)</td>
<td>12 (1.00)</td>
<td>11 (1.83)</td>
</tr>
<tr>
<td>5e</td>
<td>9 (0.818)</td>
<td>10 (0.83)</td>
<td>12 (1.00)</td>
<td>14 (1.00)</td>
<td>17 (1.00)</td>
<td>23 (2.83)</td>
</tr>
<tr>
<td>5f</td>
<td>8 (0.727)</td>
<td>10 (0.83)</td>
<td>7 (0.58)</td>
<td>11 (0.78)</td>
<td>11 (0.91)</td>
<td>21 (3.50)</td>
</tr>
<tr>
<td>Standard</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Standard used: Antibacterial = Ciprofloxacin; Antifungal = Amphotericin B.

ACKNOWLEDGEMENT

All the authors are highly indebted to The Head, Department of Chemistry, M. L. Sukhadia University, Udaipur for providing laboratory facilities, one of the authors (SJ) is grateful to SKIT, Jaipur for providing environment to write research paper.

REFERENCES

Hattori, “Synthesis and Evaluation of anti-HIV-1 and anti-
HSV-1 Activities of 4H-[1,2,4]-Triazolo[1,5-a]pyrimidin-5-

[12] T. Miyashita, M. Baba, S. Shigeta, K. Mori, K. Shinouzuka,
“Synthesis and anti-HIV-1 activity of novel 10-
thiazoloisoxazines, a structural analog of C-5 and/or C-6
substituted pyrimidine acyclonucleoside”, Chem. Pharm.

Pyrimido[5',4':5, 6]pyrido[2,3-
84] activities of novel 10-
alkylthioisoxazolo-
ole”, J. Sulf.

[14] R.G. Micetich, “Isoxazole chemistry. I. 3- or 5-(5-Nitro-2-
Vol. 12, No. 4, pp611-616.

R. Marwood, S. Patel, C.I. Ragan, S.B. Freedman and P.D.
Leeson, “5-(4-Chlorophenyl)-4-methyl-3-(1-(2-phenylethyl)
peripin-4-yl) isoxazole: A Potent, Selective Antagonist at
Human Cloned Dopamine D4 Receptors”, J. Med. Chem.,

Egebjerg, T.B. Stensbol, H.B. Osborne, F.A. Slok, T.T.A.
Kronborg and P.K. Larsen, “(S)-2-Amino-3-(3-hydroxy-7, 8-
dihydro-6H-cyclohepta [d] isoxazol-4-yl) propionic Acid,
A Potent and Selective Agonist at the GluR5 Subtype of
Ionotropic Glutamate Receptors. Synthesis, Modeling,
pp1350-1358.

Rumvall, B. Christensen, U. Ehrbar and P.H. Olesen,
“Improving the Nicotinic Pharmacophore with a Series of
(Isoxazole)methylene-1-azacyclic Compounds: Synthesis,
Structure-Activity Relationship, and Molecular Modeling”,

Buckley, J.P. Sullivan, G.M. Carrera, M.W. Holladay, S.P.
Armeric and M. Williams, “Novel Isoxazoles which Interact
with Brain Cholinergic Channel Receptors Have Intrinsic
Cognitive Enhancing and Anxiolytic Activities”, J. Med.

[19] W. Loscher, “New visions in the pharmacology of

[21] B. Singh, D. Mehta, L.K. Barethama, G.L. Talesara,
“Synthesis and biological evaluation of 7-N-(n-
alkoxyphthalimido)-2-hydroxy-4-aryl-6-
aryliminothiazolidino[2,3-b] pyrimidines and related

[22] B.J. Berger, “Antimalarial Activities of Aminoxy
No. 9, pp 2540-2542.

and antimicrobial evaluation of some pyrazolo-thiazolyl
alkoxy-1H-isouindole-1, 3(2H)-dione derivatives”, J. Sulf.

“Synthesis and Characterization of Biologically significant
5, 5’-(1,4-phenylene) bis (1-N-alkoxyphthalimido -3-aryl-2-
23(6), pp882-887.

[25] A Bapna , S Ojha and G L Talesara; “Facile synthesis of
alkoxyphthalimide derivatizedbenzimidazole assembled
pyrazoles, pyrimidines and isoxazoles via common
intermediate chalcone ”, Indian J Chem, (2008), 47B,
pp1096-1107.

[26] A. Bauer and K.S. Suresh, “2-(Aminoxy) alkyl
isothiuronium Salts, ω,ω'-Bis(aminooxy)alkanes and
1604-160