Ultrasonic Machining of Carbon Fiber Reinforced Plastic Composites: A Literature Review

Giriraj Mitharwal, Achin Srivastav, Deepak Kumar, Vikash Gautam

Department of Mechanical Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India

Email: girirajmitharwal59@gmail.com, achin.srivastav@skit.ac.in, deepak.kumar@skit.ac.in, gautam.mnitj@gmail.com

Received 13.08.2022, received in revised form 23.10.2022, accepted 25.10.2022 DOI: 10.47904/IJSKIT.12.2.2035.65-70

Abstract- Carbon fiber reinforced plastic (CFRP) Composites have been widely employed in a variety of purposes, in a variety of industries because of its exceptional abilities. Drilling a number of holes is required in CFRP in the aircraft industry. As a result, developing inexpensive drilling method is critical. Rotary ultrasonic machining (RUM) was used to successfully drill CFRP. By categorizing the findings provided in two angles, this paper investigates literature review and gives a complete evaluation of the improvements in USM of CFRP composites. To begin, the review highlights the majority of the reported investigations from 2012 to 2022 on the basis of used USM process on CFRP material including equipment/ system utilized to conduct experiments, output results and process variables evaluated, and problems investigated. The purpose of this literature study is to emphasize USM's current research position in CFRP composite drilling and thereby provide direction and a foundation for future research.

Keywords-CFRP composite, Drilling, Rotary ultrasonic machining

1. INTRODUCTION

Due to the rising use of composite materials in numerous industries for example, aerospace and automobiles, composite machining has become more essential recently. Composite materials are made by many synergistic micro-constituents that differ in physical shape and chemical makeup [2]. CFRP are employed in a variety of applications due its excellent properties such as: high ratio of strength to weight, tensile strength, fatigue strength and low thermal conductivity [3]. CFRP materials consist of Polymer as base matrix mateial with carbon fiber serving as the material's reinforcement element. CFRP composite constituents are frequently used in a great number of aerospace components because of their exceptional qualities, which include high stiffness and strength, low weight, and great fatigue resistance. Drilling, the most typical type of machining in aircraft manufacturing is the main application and this is the object of this paper this application may include both small and large

components, like clips and doors, as well as wingside flaps and main body of aircraft [4]. However, everyone knows that drilling a CFRP hole is tough because the material's unique qualities of CFRPs such as, low thermal conductivity abrasive nature and anisotropic structure [5].

RUM successfully accomplished Drilling operation on various Brittle and Ductile materials. These brittle mateials are silicon, alumina, glass, silicon carbide, graphite etc. and ductile materaials are aluminum, stainless steel alloys, tin, copper and composite mateials. The metal bonded diamond drill is used as tool for cutting in RUM. Under an ultrasonic vibration frequency, the cutting tool rotates, and feed rate will be axially toward the workpiece at a feed rate. Coolant is also pumped through the drill's core, cleaning away swarf while leaving workpiece intact at a comparatively less cutting temperature [6].

2. COMPOSITE MATERIALS

Composites are materials that are made by two or more chemically distinct elements are combined on a large scale. For the base material for composites, metal, polymer, or ceramic can be used. The composite is known as a polymer matrix composite (PMC) if the basis material is polymer. CFRP mateials were successfully used in various high perforformance applications whereas traditional materials were also used. Both type materials were used in high performace application such as: aerospace. Body structure of a Aeroplane is manufacture through lightweighted CFRP aterials where as turbine blades with nickel-based alloys to bear high heat and stress at extremely high temperatures.

3 ULTRASONIC MACHINING OF COMPOSITES

RUM is an unconventional machining method. The RUM process with better cutting-tool of a metalcored core drill with diamond abrasives illustrated in

fig.1.1. more than 5 mm thick CFRP materials may be machined and have a fibre weihgt ratio of 50 to 60 percent in particular, frequently results in coating delamination and poor workpiece quality, and this is an issue that must be addressed by novel procedures [7]. Mechanical vibrations are created by converting high-frequency electrical energy in USM by combining a transducer or booster with an energy focused device called a horn/tool assembly. An abrasive gun provides abrasive slurry, which is typically a mixture of abrasive material and alumina and abrasive materials like silicon carbide, boron carbide and alumina with water in a correct ratio is continually poured over the space between tool and the job. It can be observed that the vibration of tool creates waste slurry with fine abrasive-particles to hit workpiece's surface, causing Micro-chipping events are used to remove materials. The tool vibrates at a higher frequency, usually exceeding 20 kHz, with amplitude of 12-50 µm of along its longitudinal axis [8]. However, no research has been published a thorough comparison between drilling CFRP utilising RUM and other published techniques. Comparative research on CFRP RUM is presented in this paper. It is observed that high MRR is achieved during Rotary USM as compared to conventional one.

Fig. 1 Rotary Ultrasonic Machining [27]

USM is a material eliminating procedure that involves grit-loaded wet slurry travelling between a tool vibrating perpendicular to the workpiece at a frequency above human hearing, and the workpiece. It is different from other machining approach in that it produces approximate low heat. Because the tool never comes in contact with the workpiece, rarely is the machining pressure greater, making this process ideal for machining exceptionally hard and frangible materials like ruby, glass, diamond, sapphire, and ceramics [30,31]. A recent study on composites presented a state of art on ceramics and endorsed suitability of Rotary USM for difficult to machine materials for achieving high MRR and reducing defects such as out of roundness, cracks and edge chipping [32]. Furthermore, regardless of their electrical conductivity, it is a suitable manufacturing procedure for hard shaping materials and also breakable materials. It's a difficult process with a lot of variables, including the machine tool, the abrasive grain, the concentration of slurry, the workpiece stuff, and the operating settings.

4 LITERATURE REVIEW

The method that was taken in selecting the papers to be evaluated is outlined below. The first search string was "ultrasonic machining (USM)" followed by "CFRP" and "CFRP composites" within the search query. After then, articles are gathered from various databases (like Science Direct, Google Scholar etc.) The supporting articles aid in the development of the study's contexts by providing a theoretical backdrop.

VOLUME 12; ISSUE 2:2022

X 7	A (1	Tuble	1. Comparison of	nvesuguu	E's l'angles using KOM	0	T1 · 1
Year	Authors	Input parameters	output examined	Process variant s	Findings /result	on	of CFRP sheet
2022	Sharma et al.	Rotation speed of tool, ultrasonic power and the feed rate	Cutting force, MRR, chipping thickness	RUM	Based on state of art presented on machining of cermamics, found RUM is capable to machine materials with high strength, toughness, hardness, brittle, thermal stable, low fracture toughness. Exit chipping is minimised using RUM [32]	Milling	4.5mm, 8mm, 10mm
2021	Asmael and Safaei et. al	Rotation speed of tool, ultrasonic power and the feed rate	SR, magnitude of cutting- force, MRR, and tool wear rate.	RUM	They mention that limited research is available on USM of CFRP composites, but major experimental investigation is conduct on RUM and their hybrid method i.e. UAD, UAM, UEVR, etc. They also mention that limited reaearch is conduct on power intake of RUM. The operation process parameters such as: speed of rotation rate of feed, ultrasonic power was frequently used by researchers where as other parmeters abrasive material, shape, size, and ultrasonic vibration amplitude, etc. were less used by researchers [9].	Drilling	5.4mm, 8.1mm,12. 4mm
2021	Geieret et al.	cutting streak, feed rate, tool-work system,	acoustic emission, cutting force, cutting temperature, vibrations, digital images.	_	They used special trochoid milling technology and traditional machining technology to cut CFRP composites and check sourface roughness quality and found that traditional methoed is better than special trochoid milling technology [10].	Drilling	_
2020	Geng et al.	feed speed, cutting speed	delamination formation	RUEM	In balancing to core drilling (CD), this study looked into the mechanisms of delamination production and squashing in rotary ultrasonic elliptical machining (RUEM) [11].	core drilling (CD)	10 mm.
2019	Sivakumar et al.	spindle force, ultrasonic power, cutting rate	Surface Roughness, Material Removal Rate	RUM	In order to examine the effects of a few sequential input elements, recent investigations conducted by diverse researchers have been critically examined in this study, on executions measures [12].	Surface grinding	5.2 mm
2019	Wang, et al.	rotational speed of tool, feed rate, depth of cut	cutting forces, SR	RUSM	In this study, differentiation of RUSM and CSG with horizontal ultrasonic vibration were made[13].	conventio nal surface grinding	18.5 mm
2019	Wanga et al.	ultrasonic power, depth of cut, federate, and rotational speed of tool	surface roughness, cutting forces	rotary ultrasoni c surface machinin g (RUSM)	By managing the roughening tests, the mechanisms of material removal were surveyed, and characteristics induced by scratching and the scratching forces (feeding-directional forces and normal forces) were inspected and discussed [14].	scratching	18 mm
2019	James, and Panchal	frequency, amplitude, feed rate	depth of cavity, and cutting forces	Micro Ultrasoni c Machinin g (µUSM)	The results of a Fixed Element (FEM Analysis) on micro-machining on blended composite materials utilising Ultrasonic Machining [15].	micro- drilling	30 µm
2019	Baraheni and Amini	velocity of cutting, feed rate, and vibrational amplitude.	Thrust force and delamination	Rotary ultrasoni c drilling (RUD)	The rotary ultrasonic drilling technique on CFRP utilising a diamond core drill is studied in this research [16].	Drilling	3 mm, 6 mm
2018	Ozkana et al.	Cutting velocity, feed rate, and vibration amplitude.	Tool wear; delamination; surface roughness; cutting force	RUM	The milling operation of CFRP was the focus of this work since it is the second most widely utilized procedure, after drilling, for shaping the composite material[17].	edge- milling	11.37mm
2018	Karatas et al.	cutting speed, feed rate	surface roughness (SR)	Compari son between conventi onal and non conventi onal	Researchers have reported the comparative study of conventional machining processes (Drilling, cutting and milling) with non-traditional making methods [2].	Drilling, milling, cutting	16mm

Table 1: Comparison of investigations on composites using RUM

VOLUME 12; ISSUE 2:2022

				machinin			
				g			
				s			
2017	Fuda et al.	Rotation speed of	Cutting force	RUM	Author developed a model for feed and	Surface	18 mm
		Tool, vib. amplitude of ultra			cutting force direction for grinding of surface of CERP [18]	grinding	
		sonic power,			surface of er ki [10].		
		abrasive size, rate					
		of feed, with the					
2017	Abhishek	Grain size of	MRR	micro	They perform micro machinning on	Micromac	7mm
2017	Sonate et	Abrasive with its		ultrason	CFRP/Ti stacks [19].	hining	,
	al.	material along with		ic			
		Material of tool,		machini			
2017	Ninga et al.	Depth-cut,	surface	Rotary	A relative investigation on CFRP	Conventi	18 mm
	8	amplitude along	roughness,	ultrasoni	composites using RUSM and CSG	onal	-
		with the	torque, and	c surface	Technique conduct. They observed the	surface	
		ultrasonic	cutting forces	machinin	effect of operating parameters on torque, avial cutting forces and SP [20]	grinding (CSG)	
		unrasonie		(RUSM)	axial cutting forees, and bit [20].	(656)	
2016	Ning et al.	Feedrate, inner dia.	MRR	RUM	This research established a new modeling	Cutting	16 mm
		and outer dia. of			method for ultrasonic vibration amplitude		
		the tool.			force in RUM [6].		
2016	Li et al.	Initial hole	Surface integrity	RUEM	This paper reports a practical study on the	conventio	10 mm
		diameter,	accuracy torque		RUEM for countersinking of CFRPs for	nal	
		depth Rotary	temperature		prior [21].	nking	
		speed, Feedrate,	temperature			(CC)	
		Vibration					
		frequency,					
		amplitude.					
			an 1	1			
2016	Wang et al.	Rotational speed of	SR, torque, and	RUM	In this paper, the effects of RUM	Surface	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate,	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size tool	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm
2016	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm
2016 2015b	Wang et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed	SR, torque, and Cutting force.	RUM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding	6 mm 10 mm.
2016 2015b	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth	SR, torque, and Cutting force.	RUM Rotary ultrasoni c	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22].	Surface grinding Side milling	6 mm 10 mm.
2016 2015b	Wang et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth	Cutting force, surface integrity, tool wear	RUM Rotary ultrasoni c elliptical	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the	Surface grinding Side milling	6 mm 10 mm.
2016 2015b	Wang et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear	RUM Rotary ultrasoni c elliptical machinin	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control	Surface grinding Side milling	6 mm 10 mm.
2016 2015b	Wang et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and <u>number of slots</u> Cutting speed, feed rate, cut length and cut depth	SR, torque, and Cutting force.	RUM Rotary ultrasoni c elliptical machinin g (RUEM)	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23].	Surface grinding Side milling	6 mm 10 mm.
2016 2015b 2015a	Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and <u>number of slots</u> Cutting speed, feed rate, cut length and cut depth Cutting speed,	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear,	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23].	Surface grinding Side milling Surface	6 mm 10 mm.
2016 2015b 2015a	Geng et al. Geng , et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity,	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the	Surface grinding Side milling Surface grinding	6 mm 10 mm.
2016 2015b 2015a	Geng et al. Geng , et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24].	Surface grinding Side milling Surface grinding	6 mm 10 mm.
2016 2015ь 2015а	Geng et al. Geng , et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24].	Surface grinding Side milling Surface grinding	6 mm 10 mm.
2016 2015b 2015a 2014	Wang et al. Geng et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM ROTARY	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm
2016 2015b 2015a 2014	Geng et al. Geng , et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency Input	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm.
2016 2015b 2015a 2014	Wang et al. Geng et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM RUEM	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm
2016 2015b 2015a 2014	Geng et al. Geng , et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, et ate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase shift, Elliptical vib.	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM Rotary ultrasoni c elliptical machini	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm
2016 2015b 2015a 2014	Wang et al. Geng et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase shift, Elliptical vib. amplitude, Rotary speed Pate of	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) Rotary ultrasoni c elliptical machini ng (RUEM)	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm
2016 2015b 2015a 2014	Wang et al. Geng et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, rate vibration amplitude, vibration amplitude, Rotary speed, Rate of Feed, Detth-cut	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) ROTARY ultrasoni c elliptical machini ng (RUEM)	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm
2016 2015b 2015a 2014	Wang et al. Geng et al. Geng et al. Geng et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase shift, Elliptical vib. amplitude, Rotary speed, Rate of Feed, Depth-cut Feed rate, Depth of	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM Rotary ultrasoni c elliptical machini ng (RUEM) conventi	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling	6 mm 10 mm. 10 mm 10 mm
2016 2015b 2015a 2014 2014	Wang et al. Geng et al. Geng et al. Geng et al. Sasaharaa et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and number of slots Cutting speed, feed rate, cut length and cut depth Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase shift, Elliptical vib. amplitude, Rotary speed, Rate of Feed rate, Depth of cut, Flow rate of	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM RUEM Rotary ultrasoni c elliptical machinin ng (RUEM) conventi onal	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25].	Surface grinding Side milling Surface grinding Drilling Face grinding	6 mm 10 mm. 10 mm 10 mm
2016 2015b 2015a 2014 2014	Wang et al. Geng et al. Geng et al. Geng et al. Sasaharaa et al.	Rotational speed of tool, Feedrate, Ultrasonic power, Operating frequency, Tool amplitude, abrasive concentration, abrasive size, tool geometry, and <u>number of slots</u> Cutting speed, feed rate, cut length and cut depth Cutting speed, feed rate, cut length and cut depth Cutting speed, vibration amplitude, vibration frequency Input voltage amplitude with frequency, Input voltages phase shift, Elliptical vib. amplitude, Rotary speed, Rate of Feed, Depth-cut Feed rate, Depth of cut, Flow rate of grinding fluid, Radial depth of cut	SR, torque, and Cutting force. Cutting force, surface integrity, tool wear Grain wear, Surface integrity, Cutting force and diameter of tool wear analysis Drilling force	RUM Rotary ultrasoni c elliptical machinin g (RUEM) RUEM Rotary ultrasoni c elliptical machini ng (RUEM) conventi onal cutting	In this paper, the effects of RUM variables of tool on the response variables have been explored in process of grinding processes when MRR was kept as it was at starting [22]. In this paper, the side milling of composite CFRP using RUEM were investigated and diamond-grinding tool were utilised to shape the slots using the CG & RUEM methods in a control environment [23]. This study examined how the RUEM technique's speed ratio affected the routing of CFRP's edges[24]. A number of drilling experiments were conducted both with and without the help of the mechanism and elliptical ultrasonic vibration on composite. [25]. Cutting and grinding of CFRP Composites materials with standard coolent supplied internally through the grinding wheel and both were tested and	Surface grinding Side milling Drilling Drilling Face grinding	6 mm 10 mm. 10 mm 10 mm 7.6 mm

VOLUME 12; ISSUE 2:2022

2014	Cong et al.	Ultrasonic power, rotation speed of tool	Torque, tool life, CFRP groove depth, cutting force, CFRP entrance delamination, surface roughness, and hole size variation	RUM	This paper describes a study that used RUM to drill CFRP/Ti stacks. It compares different machining parameters comparing studies employing RUM to those in the literature that use other methodologies [27].	Drilling	14 mm
2013	Cong et al.	ultrasonic vibration amplitude, feedrate, rotational speed of tool, abrasive concentration, and abrasive size	Cutting force	RUM	A mechanistic model has been created to estimate cutting force in CFRP RUM. The mechanism for removing CFRP material has been investigated [28].	Drilling	16mm
2012	Cong et al.	Ultrasonic power, federate, coolant type, tool rotation speed,	cutting force, SR, delamination, torque, and tool wear	RUM	This paper presents research on the amount of power used by the CFRP's RUM. Under various settings for feedrate, ultrasonic power of machine, rotation speed of tool, and Composite material, power intake of the total RUM system and each component was examined. [29].	Drilling, Grinding	7mm, 12mm, 16mm, 18mm

There are several gaps are identified on the basis of past studies as discussed in Table 1, are listed below:

- Over the last ten years there was no study on fabrication of composite material with some fibers like carbon fiber, jute fiber, banana fiber, pineapple fiber etc.
- No literature has found where testing (mechanical and thermal properties i.e., hardness, tensile strength, compressive strength etc.), of composite materials with above mentioned fibers has been conducted.
- Only a few studies have looked into the effect of process factors on the response parameters, which are temperature of cutting and burr removal rate.

Since a result, more investigation is required for fabrication of composites with fibres, like carbon, jute, banana, pineapple fibers into the matter of cutting temperature, as it can impact the qualities of the work-piece material's surface integrity, particularly when cutting composite materials that are both hard and fragile.

5 CONCLUSIONS & RECOMMENDATIONS

The literature review is summarized in this and confers a conclusion of the developments of USM for CFRP composites are classified based on the studies that have been published in different research papers. The document analysis the majority of the studies published between 2012 and 2022 based on the method used, platform type, in addition it was utilized to conduct experiments, as well as process parameters (frequency, amplitude, feed rate, cutting speed etc.) and output variables (Surface Roughness, MRR, cutting forces and challenges investigated and USM was used to fill gaps during the machining of CFRP composites. Rotary USM is utmost important for machining most difficult to machine materials, attaining high MRR and minimising imperfections such as out of roundness, cracks and edge chipping.

Researchers found that raising the feed rate resulted in higher cutting pressures, while increasing the speed of cutting and reducing the rate of feed caused in lower surface roughness while milling CFRP composite materials with RUM.

Others alternatively achieved lowest factor of delamination by using a reduce level of cutting force along with low level of the feed-rate. The combination of high speed of cutting (2000-6000 rpm) and low level of rate of feed (0.2-1mm/min) was observed to decline the average surface-roughness in general [6, 18, 20].

Based on this study, instead of utilising USM or other machining methods, like rotary ultrasonic elliptical machining (RUEM), Micro Ultrasonic Machining (μ USM) etc it has been shown that employing RUM in context of cutting of various types of CFRP-hybrid composites enhances machining properties. As CFRP composites are used in various applications. The machining properties of the various CFRP (like very thin, thick yarn- woven and continuous) kinds need to be researched.

REFERENCES

- [1] T. Ishida, K. Noma, Y. Kakinuma, T. Aoyama, S. Hamada, H. Ogawa, T. Higaino, Helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen, Procedia CIRP 24 (2014) 13e18.
- [2] MeltemAltinKaratas, Hasan Gokkaya, A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, August (2018), Pages 318-326
- [3] Y. Chen, Y. Liang, J. Xu, A. Hu, Ultrasonic vibration assisted grinding of CFRP composites: effect of fiber orientation and vibration velocity on grinding forces and surface quality, Int. J.

Lightweight Material Manuf. 1 (3) (2018) 189e196.

- [4] Soutis C. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences (2005):41(2):143e51.
- [5] Karpat Y, Bahtiyar O, Deger B, et al. A mechanistic approach to investigate drilling of UD-CFRP laminates with PCD drills. CIRP Annals: Manufacturing Technology (2014); 63(1): 81– 84.
- [6] Fuda Ning, Hui Wang, Weilong Cong, P.K.S.C. Fernando. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. ultrasonics (2017); 76: 44-51.
- [7] Uhlmann E, Sammler F, Richarz S, Heitmüller F, Bilz M Machining of Carbon Fibre Reinforced Plastics. Procedia CIRP 24:19–24 (2014).
- [8] Kataria R, Kumar J Ultrasonic Machining: A Review. Adv Mater Res (2016); 1137:61–78.
- [9] MohammedAsmael& Babak Safaei. Ultrasonic machining of carbon fiber–reinforced plastic composites: a review. The International Journal of Advanced Manufacturing Technology (2021) 113:3079–3120.
- [10] Norbert Geier, Jinyang Xub, Csongor Pereszlaia, DániellstvánPoóra and J. Paulo Davimc. Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations. Procedia Manufacturing 54 (2021) 284–289
- [11] Daxi Geng, Yihang Liu, Zhenyu Shao, Mingliang Zhang, Xinggang Jiang, Deyuan Zhang. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP.Composites Part B 183 (2020) 107698.
- [12] Balaji Ra, Sivakumar Sa, Mukesh Nadarajana, Ashish Selokara. A Recent Investigations: Effect of Surface Grinding on CFRP using Rotary Ultrasonic Machining. Materials Today: Proceedings 18 (2019) 5209–5218.
- [13] Hui Wang, Yingbin Hu, Weilong Cong, Anthony R Burks. Rotary ultrasonic surface machining of CFRP composite: effects of horizontal ultrasonic vibration. Procedia Manufacturing 34 (2019) 399–407
- [14] Hui Wanga, Fuda Ning, Yuanchen Li, Yingbin Hu, Weilong Cong. Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP. Ultrasonics 97 (2019) 19-28.
- [15] Sagil James, Sagar Panchal, Parametric Study of Micro Ultrasonic Machining Process of Hybrid composite stacks using finite element method. Procedia Manufacturing 34 (2019) 408–417.
- [16] Mohammad Baraheni, SaeidAmini Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP aimed at minimizing delamination. International Journal of Lightweight Materials and Manufacture 2 (2019) 379e387.
- [17] Dervis Ozkana, Mustafa Sabri Goka, Mecit Ogea, Abdullah CahitKaraoglanli Milling Behavior Analysis of Carbon Fiber-Reinforced Polymer (CFRP) Composites. Materials Today: Proceedings 11 (2019) 526–533.
- [18] Fuda Ning & Weilong Cong & Hui Wang & Yingbin Hu & Zhonglue Hu & Zhijian Pei Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. The International Journal of Advanced Manufacturing Technology 92 (2017) 1217-1229.

- [19] Abhishek Sonate, Dheeraj Vepur, Sagil James Study of Micro Ultrasonic Machining of Cfrp/Ti Stacks. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition IMECE (2017).
- [20] Fuda Ning, Hui Wang, Yingbin Hua, Weilong Cong, Meng Zhang, Yuzhou Li Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding Procedia Manufacturing 10 (2017) 557 – 567
- [21] DaxiGeng, Deyuan Zhang, Yonggang Xu, Fengtao He and FuqiangLiu.Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. Journal of Reinforced Plastics and Composites 33(9), (2014): 797-809.
- [22] Hui Wang, Fuda Ning, Yingbin Hu, PKSC Fernando, ZJ Pei and Weilong Cong. Surface grinding of carbon fiber– reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables Advances in Mechanical Engineering 8(9), (2016).
- [23] DaxiGenga, Deyuan Zhang, Yonggang Xu, Fengtao He, Dapeng Liu, Zuoheng Duan. Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity, Ultrasonics 59 (2015), 128-135.
- [24] Zhe Li, Deyuan Zhang, Wei Qin and DaxiGengFeasibility study on the rotary ultrasonic elliptical machining for countersinking of carbon fiber–reinforced plastics. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231(13) (2016): 2347-2358.
- [25] Daxi Geng, Deyuan Zhang, Yonggang Xu, Xinggang Jiang, Zhenghui Lu and Dawei Lu Effect of speed ratio in edge routing of carbon fiber-reinforced plastics by rotary ultrasonic elliptical machining. Journal of Reinforced Plastics and Composites 34(21) (2015): 1779-1790.
- [26] Hiroyuki Sasaharaa, Tomoko Kikumaa, Rei Koyasub, Yasuhiro Yao Surface grinding of carbon fiber reinforced plastic (CFRP) with an internal coolant supplied through grinding wheel. Precision Engineering. 38(4) (2014): 775-782.
- [27] W.L. Cong a, Z.J. Pei b, C. Treadwell Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.
- [28] W.L. Cong a, Z.J. Pei a, X. Sun b, C.L. Zhang c Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force Ultrasonics 54 (2014) 663–675
- [29] W.L. Cong a, Z.J. Pei a, T.W. Deines a, Anil Srivastava b, L. Riley c, C. Treadwell Rotary ultrasonic machining of CFRP composites: A study on power consumption Ultrasonics 52 (2012) 1030–1037.
- [30] Sanjay Agarwal, On the mechanism and mechanics of material removal in ultrasonic machining International Journal of Machine Tools & Manufacture 96 (2015) 1–14.
- [31] R. Nuwal, V. Gautam An Experimental Study Carried on Rotary Ultrasonic Machining on Fiber Reinforced Polymer Composites SKIT Research Journal 11(2) (2021) 71-76.
- [32] Sharma, A., Babbar, A., Tian, Y., Pathri, B.P., Gupta, M. and Singh, R. Machining of ceramic materials: a state-of-the-art review. International Journal on Interactive Design and Manufacturing (2022), pp.1-