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Abstract: In this paper we apply generalized fractional
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1. INTRODUCTION

Fractional calculus has considerable importance in
vast areas of applied sciences. Uses of Fractional
calculus in various areas have extensively been
studied by several researchers [ 1-4]. The
exhaustive literature can also be found in the works
[ 5-8]

In 1996, Saigo M. and Maeda [9] introduced and
defined the Saigo Maeda generalized Fractional
integral operators as
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The corresponding generalized fractional
differential operators are
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where £,¢',&,E''neC;xeR",Re(n) >0

For the present study we shall require the lemma [9]
which is as follows:
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On setting ¢'=0, Saigo Maeda generalized

fractional integral operators reduces to the well-
known Saigo fractional integral operators [9] as
follows:
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setting ¢ = 0, Saigo Maeda Fractional differential

operators reduce to the following Saigo Differential
operators:

[D;_ﬂf) (_»;) :D[I_;’:—-_q:;'-qf)(x)
(D457 )= (D747 £) )

These fractional integral operators introduced by
Saigo are interesting generalizations of several
fractional integral operators like “Weyl, Riemann-
Liouville, Erdélyi- Kober”. The details can be found
in the work by Kilbas et al [10]

The two-parameter extension of extended Beta
function due to Srivastava et al [11] is

. froty oo b K
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(7

In 2013, Luo and Raina [12] introduced and defined
the following generalized hypergeometric function
using the two-parameter extension of extended Beta
function due to Srivastava et al [11]:
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In our investigation we will use the Hadamard
product applied on two analytic functions. The
Hadamard product decomposes a known function in
two unknown functions. If one of the given power
series exhibits an entire function, then the
Hadamard product also exhibits an entire function.

Considering  F(2) :=ZAan for |z |<R;
m-0
9)
and G(z)=)'B,z"  for|z| <Ry  (10)
m=0

Here Roand Rjare the radii of convergence of
F(z) and G ( z) respectively.
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Hadamard product series of F (z) and G (2) is
defined as

{F +G} (z)::iABlz' ={G*F}(z) for|z<Y
...(11) "

here

reim A8 A2,

For more details pertaining to Hadamard product,
one may refer to [13, 14]

In recent years, Kumar and co-workers [15-17]
have applied Tsallis Statistics and Pathway Model
and in numerous fields like thermos nuclear
reaction rate theory in applied analysis and in
astrophysics.

The pathway model, introduced by Mathai [18], is
based on the principle of switching among
generalized extended typel beta family, type2 beta
family and gamma family. For the variable pathway
parameter following three functional forms of the
pathway model arises
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where p>0,6>0,0>0,4>0; A, Azand As are
the normalized constants.

Kumar [15] introduced and defined a fractional type
of pathway transform as

(PP F)(2) = J;' DLY(t2)F (D)dt ; forx > 0

......................................................... (13)
where
1 Wea
L(H)] ERR
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...(14)

In the same paper Kumar defined that if f (x) be a
function of real variable x, integrable over finite
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interval (a, b) where xe(a, b),a>0,then3n,neR
such that

i. For every arbitrary b >0, I e f(x) dx -2

finite value when 7 — o0
ii. Forany arbitrary a >0,

a
I[f (X)]dx —> afinite value as ¢ — 0"
9

then the Pathway transform of f (x) exists and is

denoted by P,[ f(X): p] for
R M >/ for peC.

a-1
Here it is very important to note that as o goes to 1,
the Pj- transform leads to well-known Laplace
Iirrng {f(x):s}=L{f(X):s}

The Euler-Beta transform [19] of a complex values
function f (x), where x is real, is given by

B{f(x).m,n}=
J" 1)
..(15)

transform i.e.

d R(x) =0, R(m), Rim) =0

2. MAINRESULTS
Theorem 1: -
U0 yeCiRD ) > Rla., ) =0,
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Proof:

To prove the theorem, we first translate the
extended generalized hyper geometric function in
series form using equation (8) and then reversing
the sequence of fractional integral operator,
integration and summations which is allowed under
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the conditions stated. Then by using the result (3)
we get the desired outcome with a few minor
simplifications using equation (11).

Theorem 2:-
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Proof:

In order to prove theorem under the stated
conditions we first follow the same guideline as
followed to prove theorem 1 and then using the
result (4) we arrive at the desired result after a little
simplification using equation (11).

Theorem 3: -
S LEyeC;R(b, ) > Rla. ) =0.
p=0+Lj=12,.0; R(k)>0E<1WIth

R(y) > max{0,Re({ + ¢’ +f—k),Re(§ -0}
R(4)>0,R(n) >0 then for x >0

t**(a—bt)"
BiI5s a,8y,...,a (xX); A7
+ (k) 21 Gp
2F b, b, B0 P

=T(p)a x: < 12(2| ( j
(x+m,1),

G| BB .

#F {bl,bz ----- b, X“ﬂ] ‘U( (z+m1'),
(x+m-¢-¢'-1+k,1), (y+m+1'-£"7), (1,2
(x+m+k-¢-2"10), (x+m+k-<"-1,1, (A1+2n,1)

Proof:

In order to prove theorem 3 under the stated
conditions we use the result (15) along with the
same process followed to prove theorem 1 and
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theorem 2, we arrive at the desired outcome with a
few simplifications using equation (11).

Theorem 4: -

If £, 00k yeC;8>1;

R(bj ) > R(a]+l ) >O ! p = q+l! J :1121'-'!q;
g
a
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where Q(5:5) = 6-1
’ In{1+(5-1)5 }

Proof:

In order to prove Theorem 4, we use the result (13)
along with the same process followed to prove
theorem 1 and theorem 2, we arrive at the desired
outcome with a few simplifications using equation
(12).

Theorem 5: -

5.0 60 kyeCiRbB, ) > Ra., ) >0,

p=q+1j=12,..,q; R(k)>0, b < Lwith

bt
a
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Proof:

In order to prove Theorem 5, we use the result (5)
along with the same process followed to prove
theorem 1 and theorem 2, we arrive at the desired
outcome with a few simplifications using equation
(12).
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3. CONCLUSION

The theorems derived here are quite broad in nature
and several new findings can be determined from
the results obtained here. The broad nature of the
functions used in the theorem makes the Theorems
suitable for many extensions.
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