
SKIT Research Journal VOLUME 12; ISSUE 2:2022

40

Hardware Implementation of Single

Precision Floating Point Arithmetic Unit

Noorjabeen1, Vikas Pathak1, Rahul Vijay2

1 Department of Electronics & Communication Engineering, Swami Keshvanand Institute of Technology, Management

and Gramothan, Jaipur, India
2 Department of Electronics & Communication Engineering, Banasthali Vidyapith, Jaipur, India
Email: noorkhan984914@gmail.com, vikas.pathak@skit.ac.in, vijay.rahul1986@gmail.com

Received 10.09.2022, received in revised form 24.09.2022, accepted 12.10.2022

DOI: 10.47904/IJSKIT.12.2.2030.40-45

Abstract: This research paper represents the

floating-point arithmetic calculations. In this work

floating point arithmetic unit multiplication and

addition have been performed. In this manuscript,

IEEE 754 standard of 32-bit single precision floating

point arithmetic is used. Floating-point arithmetic is

useful for high dynamic range arithmetic but is more

resource intensive than integer arithmetic. Floating

point calculations occur on system has a wide range of

values that require fast processing times. This research

paper represents the redesign of floating-point

arithmetic unit. It deals with the ALU similar structure

which performs addition/subtraction and

multiplication with the selection line. If the selection

line is ‘1’ then it performs addition / subtraction

otherwise for selection line ‘0’ multiplication of

floating-point numbers is done. The proposed design is

simulated using Xilinx Isim Simulator and synthesized

and impleneted using Xilinx ISE on Nexys-4 DDR

FPGA device.

Keyboard - Floating point Arithmetic, hardware

implementation, Single precision, FPGA, ALU

1. INTRODUCTION

Designing digital processors and application systems

is crucial for numerical calculations. In digital

systems, arithmetic circuits play a significant role.

Many complex circuits have evolved as a result of

thorough development of very large-scale

integration (VLSI), and they are now simple to build

[1-2].

In arithmmetic circuits (like digital filters, Digital

signal processors) many times we have to operate on

real numbers. For representing real numbers in

binary form two optins are available: Fixed point and

floating-point arithmetic. Due to the advantages (like

its high precision, wide range, and simple

regulations) floating point technique is particularly

valuable over fixed point. However, arithmetic units

have been around for many years, and their common

representation over the past decade has been the

IEEE standard for floating point arithmetic [IEEE

754-2008]. In addition to their standard

implementations, floating-point operators need

additional space (or time). The system designer takes

into account the throughput limitation and area for

floating point representation [3-4].

A method of representing numbers is referred to as

floating point either too large or too insufficient to be

an integer. Resolution can be maintained with

floating point representation and accuracy Unlike

Fixed Point Representation [5]. Many challenging

fields are discovered using floating point arithmetic

applications. High research and design emphasis are

paid on floating point processors units [6]. Floating

point equivalents are unquestionably a precise

trade-off as compared to using fewer data bits to

describe the fixed point. It is recommended to

choose an architecture that can execute arithmetic

operations directly on complex numbers represented

using a 32-bit subset of the IEEE floating-point

format in order to avoid this compromise and

minimise the number of lookup tables obtained [7].

The term floating point indicates that the radixpoint

or decimal point is floating and can be positioned at

any place.

The floating-point format for hardware

implementations of floating-point units depends on

variables like: Maximum accessible arithmetic error,

dynamic range requirements, power consumption,

and more [8]. Due to its floating point is used for

many applications as Neural Network Efficiency via

Post-Training Quantization with Adaptive

Floating-Point [9].

This paper presents an FPGA implementation of

single precision of floating-point arithmetic unit.

The floating-point arithmetic implentation have been

done in hardware description language (VHDL) and

are based on the IEEE-754 standard.

In section 2, floating point algorithm section

describes the basic floating-point format for addition

/subtraction and multiplication with the steps

involved for the algorithm are discussed briefly.

Section 3 is the proposed design of floating-point

arithmetic unit where we discuss in detail using the

flow diagram about the design, we have

implemented using VHDL. Section 4 presents the

simulation section, in which the simulation result of

Floating-point adder/subtractor, multiplier and ALU

waveform generated through Simulator is shown.

Here synthesis result of the ALU is also shown.

SKIT Research Journal VOLUME 12; ISSUE 2:2022

41

Finally, the manuscript is concluded, and future

scope research directions are discussed in section 5.

2. FLOATING POINT ALGORITHM

Real numbers can be represented in binary format in

a variety of ways, like fixed point and floating-point

numbers. But floating-point arithmetic has several

advantages like high precision and wider range

compared to fixed point arithmetic. This paper

focuses on IEEE 754 single precision binary format.

The IEEE 754 [10] standard represents floating point

numbers in two forms single precision and double

precision binary format. Its representation is shown

in Table 1. In this manuscript, the focus is on single

precision floating point format due to its requirement

of lesser hardware resources. It consists of sign bit,

exponent and Mantissa. 32-bit Single Precision

Floating-Point Numbers IEEE standard have one

sign bit (S), eight bit exponent (E) and Mantissa (M)

have twenty-three-bit fraction [11].

Table 1: IEEE 754 floating point binary format representation

TYPE SIGN EXPONENT MANTISSA

32-bit

single
precision

1bit 8 bit 23bit fraction

64 bit-

double

precision
1bit 11bit 52bit fraction

The algorithms for floating point addition/

substraction and multiplication have been described

in this section, which become the base for drawing

the architecture and then writing the VHDL code for

implementation of 32-bit floating point arithmetic

unit.

2.1 Steps for Floating point addition

For floating point addition, the exponent should be

same. So if they are not same we have to make them

same. Further it can be explained in two cases might

take place when two floating point numbers are

added .

Case 1: - When both numbers are of same sign

Step 1: - Two number X and Y having Sx, Sy as

their sign bit and Mx, My, and Ex, Ey as their

Mantissa and exponent respectively.

Step 2: - If Ex or Ey = ‘0’. If yes; the hidden bit of X

and Y is 0. If not, then Ey > Ex is checked if yes X

and Y are swapped and if Ex > Ey; then the content of

X and Y are not swapped.

Step 3: - The difference in exponent is calculated d =

Ex - Ey. If d = ‘0’ then the sifting of significand is not

done. But if the value of d is more than ‘0’ than Y is

assigned with ‘a’ and then shifted to the right by an

amount ‘a’ and load left bit by ‘0’. The hidden bit is

also included in shifting.

Step 4: - Exponent of Y is added with the ‘a’. Now

the new value of Ey is equal to the addition of

previous Y and ‘a’ and after addition X becomes

equal to Y.

Step 5: - X and Y signed are checked, if it doesn’t

match, then switch to step 6.

Step 6: - Add significant of X and Y as well as

hidden bit.

Step 7: - 1 is added to the exponent value of both the

equivalent exponent either X or new Y, if carry is

generated in addition of significant. After addition,

the result of significand is shifted towards right by

one.

Step 8: - Check if there is no carry in step 6, then

previous exponent is the real exponent.

Step 9: - Sign is taken as MSB of either X or Y.

Step 10: - Concatenate the sign bit, exponent value

and mantissa into 32-bit format excluding 24th bit of

significand with is the hidden bit.

Case 2: - When both numbers are of different

sign.

Steps 1, 2, 3 and 4 will remain same as in the above

case [12].

Step 5: - Sign of X and Y are examined whether they

have different sign or not, if ‘yes’.

Step 6: - Take 2’s compliment of Sy, which is then

added to Sx (S= Sx + 2’s compliment of Sy).

Step 7: - Significant is added if there is generation of

carry bit. If yes; then generated carry will be

discarded and the result is also sifted towards left till

there is ‘1’ in the SB and the amount of shifting is

counted which is denoted by ‘b’.

Step 8: - Then ‘b’ is subtracted from exponent value.

Actual exponent is calculated by subtraction of ‘b’

from exponent of first number.

Step 9: - If there is no carry in step 6 then MSB = 1

and in that case, S is replaced by 2’s complement.

Step 10: - Taking sign of larger number sign of final

result is computed.

Step 11: - Concatenate the result into 32-bit format

excluding 24th bit of significand (hidden bit).

2.2 Steps for Floating Point Multiplication

Assume A and B are the numbers taken for

multiplication. It consists of sign bit (Sa, Sb),

mantissa (Ma, Mb) and exponent (Ea, Eb) [6].

Multiplication of Floating point is performed

through following steps:

M = Ma * Mb

E = Ea + Eb - Bias

S = Sa XOR Sb

➢ Calculation of Exponent: The exponent is

added to both binary adders. The input and

offset are subtracted from the estimates [13].

The result received as the intermediate

exponent.

SKIT Research Journal VOLUME 12; ISSUE 2:2022

42

➢ Calculation of significant: Both unsigned

signifant are multiplied and the decimal point is

inserted in the multiplication product [14]. The

result received is known as transitional product.

➢ Calculation of sign bit: The sign bit depends on

the numbers. If one of the numbers have

negative, then result of multiplication is

negative which can be achieved by Xoring the

sign of two inputs.

3. PROPOSED ARCHITECTURE OF

FLOATING-POINT ARITHMETIC UNIT

The proposed architecture for floating point

arithmetic unit is discussed below. It contains the

flow diagram which describes the various

components (which can be further used for writing

the VHDL code) for adder / subtractor and multiplier

blocks of floating point aritmetic unit.

3.1 Architecture of floating-point Adder /

subtractor

It is well known that floating point numbers have

three main components i.e., sign bit, mantissa and

exponent. For two number X and Y, Sx, Sy are

considered as their sign bit, whereas Mx, My, and Ex,

Ey are there Mantissa and exponent respectively.

First of all, we check for sign bit which is Sx and

Sy and then exoring is done. For the mantissa part the

Mx, My are compared in mantissa comparator, from

where we get Mx-gt-My. The exponent of both the

number Ey and Ex are compared in Exponet

comparator and from where we have two output Ex

equal to Ey (Ex-eq-Ey) and Ex greater than Ey

(Ex-gt-Ey). In next step, the denormalization which is

addition of 1 bit to the exponent and mantissa is done.

And we get greater exponent (g-e) and lower

exponent (l-e). Then for mantissa we get greater

mantissa (g-m) and lower mantissa (l-m). Exponent

portion which is “g-e”, and “l-e” goes to subtractor,

and we get d - e at outcome which goes to barrel

shifter. From right shifter/ barrel shifter we get shift-

m which goes to adder/ subtractor block. The sign bit

decides for the adder/ subtractor where we have the

mantissa g-m and l-m and the shift-m from where we

get sum - m as a output. The output of barrel shifter

(l-m) and adder/ subtractor (sum - m) is done on

normalization i.e., 1 is subtractor from mantissa &

exponent using priority Encoder and left shifter is

done. And at last, by combing all the three exponents,

mantissa and sign we get the output “z” which is the

addition of the two floating point numbers.

Figure 1: Proposed architecture of floating-point Adder /

subtractor.

3.2 Proposed architecture of floating-point

Multiplier

Assume X and Y are the numbers taken for

multiplication. It consists of sign bit (Sx, Sy),

mantissa (Mx, My) and exponent (Ex, Ey).

Multiplication of Floating-point numbers is

explained in following paragraph.

First of all, the sign bit of both the number is checked.

If both are not same, then Xoring is done. Then

23-bits mantissas Mx and My are denormalized

(addition of 1) and send to 24 bit multiplier, which

results in 47th bit output. Then 47th bit of multiplied

mantissa output is sent to adder as a flag bit. The

exponent of both the number Ex and Ey (8 bit) is

added along with the flag. When the exponents are

added, the 127 value (inherit compoenent of

exponent) is added two times. So, to get the exact

exponent 127 value is subtracted from the output of

the exponent adder. Starting 23-bits (select either

46-24 (for flag = 1) or 45-23 (for flag = 0) depending

in 47th bit) are selected from multiplier output for

getting the exact normalized mantissa output. The

mantissa (normalized output) (p-m) received from

24- bit multiplier and the output from the subtractor

which is the exponent portion and also the sign bit

after Xoring is combined together to form the

product of two floating point number.

SKIT Research Journal VOLUME 12; ISSUE 2:2022

43

Figure 2: Proposed architecture of floating-point multiplier

3.3 Combined architecture of floating-point

adder/subtractor and multiplier

Figure 3 shows the propsed combined architecture of

floating-point adder/ subtractor and multiplier which

consist of an adder, a multiplier, 2:1 MUX with a

selection line. It shows that the proposed

architecture will work as adder/Subtractor for

selection Input s=1, whereas it will work as

multiplier for s=0.

Figure 3: Proposed architecture of combined floating-point

architecture of adder/subtractor and multipier

4. RESULT AND DISCUSSION

4.1 Simulation Results

The proposed design is simulated and verified using

Xilinx Isim simulator. For this a VHDL test-bench is

written. The proposed architecture is verified for

both floating point adder/subtractor and multiplier.

The timing wave forms (with hexadecimal format)

of simulated design is shown in Figure 4. These

wave forms clearly indicates that proposed

architecture will work as adder/Subtractor for

selection input s=1, whereas it will work as

multiplier for s=0. For S=0 (Adder/Subtractor), the

inputs taken are a=0.14, 1.20, 0.67 and b=0.11, 0.45,

0.34 then we get the output y = 0.25, 1.65, 1.01.

Similarly for S=1 (Multiplier), the inputs taken are

a=1.46, 0.89, 1.32 and b=0.78, 1.52, 0.69 then we get

the output y=2.24, 2.41, 2.01. These result clearlry

indicates that we got the similar practical simulation

outputs as compared to theoretical values for adder /

multipler.

.
Figure 4: Simulation Waveform of proposed floating-point arithmetic unit

4.2 Synthesis Results:

SKIT Research Journal VOLUME 12; ISSUE 2:2022

44

The proposed design is syntheised using Xilinx ISE

2014.4 and implemented on Nexys – 4 DDR FPGA

(Artix – 7 FPGA Family) Trainer Kit (with actual

device named as “xc7a100t-3csg324”). VHDL

Language is used for writing the HDL code of

proposed deign. The RTL schematic (top and

internal view) is shown in Figures 5 and 6

respectively. The top-view clearly indicates the

various inputs and outputs of the proposed design.

The internal view represents the different internal

components like adder, multipler, multiplexer etc.

Further if we enhance the multiplier/ adder blocks,

then the detailed gate level netlist components of

respective block can be visualized.

Figure 5: - RTL Schematic (top view) of Floating-Point

arithmetic unit

Figure 6: - RTL Schematic (internal view) of Floating-Point

arithmetic unit

Table 2 shows the synthesis report, which indicates

the hardware units used in floating point arithmetic

units. Device Utilization summary is represented in

table 3, which indicates that how many components

(out of the available FPGA components) are used.

Theire percentage utilization are also shown in this

table. The synthesis timing summary (as shown in

figure 7) indicates the maximum combinational path

delay of proposed design is 12.926 ns.

Figure 7: - Synthesis timing summary of Floating-Point

arithmetic unit

Table 2: Hardware blocks used in proposed design implemented

for Artix-7 FPGA Kit.

S. No. Device used No. of Devices Used

1 Multiplier 1

2 Adder/ Subtractor 7

3 Latches 1

4 Comparator 3

5 Multiplexer 47

6 Xors 2

Table 3: Devices utilization summary of proposed design

implemented for Artix-7 FPGA Kit.

Logic utilization

of devices

Used Available Utilization

Slice register 1 126800 0%

Slices LUTs 379 63400 0%

Fully used LUT -

FF Pairs

1 379 0%

Bonded IOBs 97 210 46%

Number of

DSP48E1s

2 240 0%

5. CONCLUSION

Floating point calculations occur on system has a

wide range of values that require fast processing

times. In general, it may be assumed that fixed point

implementations are faster and less expensive,

although floating-point implementations offer a

higher dynamic range and don't require scaling,

which may be appealing for algorithms with more

intricate logic. In this manuscript, an hardware

efficient architecture of combined floating point

arithmetic unit is proposed. In this hardware unit,

Addition, subtraction and multiplication operations

are executed according to 32-bit single precision

floating point algorithm (IEEE-754 standard). The

VHDL code is written for describing the hardware of

proposed design. The hardware architecture is

synthesized using Xilinx ISE Tool and implemented

on Nexys- 4 DDR- FPGA (Artix - 7 family FPGA)

Board. Synthesis results indicates that, the propesed

design has 12.926 ns of prpopogation delay with

efficient use of limited hardwrae resources.

REFERENCE

[1] Muller, J.-M., Elementary Functions: Algorithms and

Implementation, 2ndedition, Chapter 10, ISBN
0-8176-4372-9, Birkhäuser, 2006.

[2] Sasidharan, Anjana, and P. Nagarajan. "VHDL

Implementation of IEEE 754 floating point

unit."International Conference on Information

SKIT Research Journal VOLUME 12; ISSUE 2:2022

45

Communication and Embedded Systems (ICICES2014).
IEEE, 2014.

[3] Paschalakis, Stavros, and Peter Lee. "Double precision
floating-point arithmetic on FPGAs."Proceedings. 2003

IEEE International Conference on Field-Programmable
Technology (FPT) (IEEE Cat. No. 03EX798). IEEE, 2003.

[4] Sunesh, N. V., and P. Sathishkumar. "Design and

implementation of fast floating point multiplier unit."2015
International Conference on VLSI Systems, Architecture,
Technology and Applications (VLSI-SATA). IEEE, 2015.

[5] Purnima, Shrivastava, et al. "VHDL Environment for Floating

point Arithmetic Logic Unit-ALU Design and Simulation.

"Research Journal of Engineering Sciences. ISSN 2278
(2012): 9472.

[6] Grover, Naresh, and M. K. Soni. "Design of FPGA based

32-bit Floating Point Arithmetic Unit and verification of its

VHDL code using MATLAB."International Journal of
Information Engineering & Electronic Business 6.1 (2014).

[7] Rajesh, GOLLA Srinivasulu Mr G., and V. Trimurthulu.

"Optimized Design and Implementation of IEEE-754
Floating Point Processor."

[8] Khushbu Naik and Tarun Lad, “Implementation of IEEE 32
Bit Single Precision Floating Point Addition and

Subtraction”, International Journal of Computer Application,

Volume 5,

No.3, pp. 107-111, April 2015

[9] Liu, Fangxin, et al. "Improving neural network efficiency via

post-training quantization with adaptive floating-point.
"Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021.

[10] IEEE 754-2008, IEEE Standard for Floating-Point
Arithmetic, 2008.

[11] Grover, Naresh, and M. K. Soni. "Design of FPGA based

32-bit Floating Point Arithmetic Unit and verification of its

VHDL code using MATLAB."International Journal of
Information Engineering & Electronic Business 6.1 (2014).

[12] Karan Gumber and Sharmelee Thangjam, “Performance

Analysis of Floating Point Adderusing VHDL on
Reconfigurable Hardware”, International Journal of

Computer Applications, Volume 46, No.9, pp. 1-5, May

2012
[13] Paulo S. R. Diniz, Eduardo A.B. da Silva and Sergio L. Netto,

“Digital Signal Processing: System Analysis and Design”,

ISBN: 9780511781667, Cambridge University Press
[14] Pardeep Sharma and Gurpreet Singh, “Analysing Single

Precision Floating Point Multiplieron Virtex 2P Hardware

Module”, International Journal of Engineering Research
andApplications (IJERA), Vol. 2, Issue 5, pp. 2016-2020,

September- October 2012

