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Abstract: This research paper represents the 

floating-point arithmetic calculations. In this work 

floating point arithmetic unit multiplication and 

addition have been performed. In this manuscript, 

IEEE 754 standard of 32-bit single precision floating 

point arithmetic is used.  Floating-point arithmetic is 

useful for high dynamic range arithmetic but is more 

resource intensive than integer arithmetic. Floating 

point calculations occur on system has a wide range of 

values that require fast processing times. This research 

paper represents the redesign of floating-point 

arithmetic unit. It deals with the ALU similar structure 

which performs addition/subtraction and 

multiplication with the selection line. If the selection 

line is ‘1’ then it performs addition / subtraction 

otherwise for selection line ‘0’ multiplication of 

floating-point numbers is done. The proposed design is 

simulated using Xilinx Isim Simulator and synthesized 

and impleneted using Xilinx ISE on Nexys-4 DDR 

FPGA device. 

Keyboard - Floating point Arithmetic, hardware 

implementation, Single precision, FPGA, ALU 

1. INTRODUCTION 

Designing digital processors and application systems 

is crucial for numerical calculations. In digital 

systems, arithmetic circuits play a significant role. 

Many complex circuits have evolved as a result of 

thorough development of very large-scale 

integration (VLSI), and they are now simple to build 

[1-2]. 

In arithmmetic circuits (like digital filters, Digital 

signal processors) many times we have to operate on 

real numbers. For representing real numbers in 

binary form two optins are available: Fixed point and 

floating-point arithmetic. Due to the advantages (like 

its high precision, wide range, and simple 

regulations) floating point technique is particularly 

valuable over fixed point. However, arithmetic units 

have been around for many years, and their common 

representation over the past decade has been the 

IEEE standard for floating point arithmetic [IEEE 

754-2008]. In addition to their standard 

implementations, floating-point operators need 

additional space (or time). The system designer takes 

into account the throughput limitation and area for 

floating point representation [3-4]. 

A method of representing numbers is referred to as 

floating point either too large or too insufficient to be 

an integer. Resolution can be maintained with 

floating point representation and accuracy Unlike 

Fixed Point Representation [5]. Many challenging 

fields are discovered using floating point arithmetic 

applications. High research and design emphasis are 

paid on floating point processors units [6]. Floating 

point equivalents are unquestionably a precise 

trade-off as compared to using fewer data bits to 

describe the fixed point. It is recommended to 

choose an architecture that can execute arithmetic 

operations directly on complex numbers represented 

using a 32-bit subset of the IEEE floating-point 

format in order to avoid this compromise and 

minimise the number of lookup tables obtained [7]. 

The term floating point indicates that the radixpoint 

or decimal point is floating and can be positioned at 

any place. 

The floating-point format for hardware 

implementations of floating-point units depends on 

variables like: Maximum accessible arithmetic error, 

dynamic range requirements, power consumption, 

and more [8]. Due to its floating point is used for 

many applications as Neural Network Efficiency via 

Post-Training Quantization with Adaptive 

Floating-Point [9]. 

This paper presents an FPGA implementation of 

single precision of floating-point arithmetic unit. 

The floating-point arithmetic implentation have been 

done in hardware description language (VHDL) and 

are based on the IEEE-754 standard.  

In section 2, floating point algorithm section 

describes the basic floating-point format for addition 

/subtraction and multiplication with the steps 

involved for the algorithm are discussed briefly. 

Section 3 is the proposed design of floating-point 

arithmetic unit where we discuss in detail using the 

flow diagram about the design, we have 

implemented using VHDL. Section 4 presents the 

simulation section, in which the simulation result of 

Floating-point adder/subtractor, multiplier and ALU 

waveform generated through Simulator is shown. 

Here synthesis result of the ALU is also shown. 
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Finally, the manuscript is concluded, and future 

scope research directions are discussed in section 5. 

2. FLOATING POINT ALGORITHM 

Real numbers can be represented in binary format in 

a variety of ways, like fixed point and floating-point 

numbers. But floating-point arithmetic has several 

advantages like high precision and wider range 

compared to fixed point arithmetic. This paper 

focuses on IEEE 754 single precision binary format. 

The IEEE 754 [10] standard represents floating point 

numbers in two forms single precision and double 

precision binary format.  Its representation is shown 

in Table 1. In this manuscript, the focus is on single 

precision floating point format due to its requirement 

of lesser hardware resources.  It consists of sign bit, 

exponent and Mantissa. 32-bit Single Precision 

Floating-Point Numbers IEEE standard have one 

sign bit (S), eight bit exponent (E) and Mantissa (M) 

have twenty-three-bit fraction [11].  

 
Table 1: IEEE 754 floating point binary format representation 

TYPE SIGN EXPONENT MANTISSA 

32-bit 

single 
precision  

1bit 8 bit 23bit fraction 

64 bit- 

double 

precision 
1bit 11bit 52bit fraction 

 

The algorithms for floating point addition/ 

substraction and multiplication have been described 

in this section, which become the base for drawing 

the architecture and then writing the VHDL code for 

implementation of 32-bit floating point arithmetic 

unit.  

2.1 Steps for Floating point addition  

For floating point addition, the exponent should be 

same. So if they are not same we have to make them 

same. Further it can be explained in  two cases might 

take place when two floating point numbers are 

added .  

Case 1: - When both numbers are of same sign  

Step 1: - Two number X and Y having Sx, Sy as 

their sign bit and Mx, My, and Ex, Ey as their 

Mantissa and exponent respectively. 

Step 2: - If Ex or Ey = ‘0’. If yes; the hidden bit of X 

and Y is 0. If not, then Ey > Ex is checked if yes X 

and Y are swapped and if Ex > Ey; then the content of 

X and Y are not swapped.  

Step 3: - The difference in exponent is calculated d = 

Ex - Ey. If d = ‘0’ then the sifting of significand is not 

done. But if the value of d is more than ‘0’ than Y is 

assigned with ‘a’ and then shifted to the right by an 

amount ‘a’ and load left bit by ‘0’. The hidden bit is 

also included in shifting.  

Step 4: - Exponent of Y is added with the ‘a’. Now 

the new value of Ey is equal to the addition of 

previous Y and ‘a’ and after addition X becomes 

equal to Y. 

Step 5: - X and Y signed are checked, if it doesn’t 

match, then switch to step 6. 

Step 6: - Add significant of X and Y as well as 

hidden bit. 

Step 7: - 1 is added to the exponent value of both the 

equivalent exponent either X or new Y, if carry is 

generated in addition of significant. After addition, 

the result of significand is shifted towards right by 

one. 

Step 8: - Check if there is no carry in step 6, then 

previous exponent is the real exponent. 

Step 9: - Sign is taken as MSB of either X or Y. 

Step 10: - Concatenate the sign bit, exponent value 

and mantissa into 32-bit format excluding 24th bit of 

significand with is the hidden bit.  

Case 2: - When both numbers are of different 

sign. 

Steps 1, 2, 3 and 4 will remain same as in the above 

case [12]. 

Step 5: - Sign of X and Y are examined whether they 

have different sign or not, if ‘yes’. 

Step 6: - Take 2’s compliment of Sy, which is then 

added to Sx (S= Sx + 2’s compliment of Sy). 

Step 7: - Significant is added if there is generation of 

carry bit. If yes; then generated carry will be 

discarded and the result is also sifted towards left till 

there is ‘1’ in the SB and the amount of shifting is 

counted which is denoted by ‘b’. 

Step 8: - Then ‘b’ is subtracted from exponent value. 

Actual exponent is calculated by subtraction of ‘b’ 

from exponent of first number. 

Step 9: - If there is no carry in step 6 then MSB = 1 

and in that case, S is replaced by 2’s complement. 

Step 10: - Taking sign of larger number sign of final 

result is computed. 

Step 11: - Concatenate the result into 32-bit format 

excluding 24th bit of significand (hidden bit). 

2.2 Steps for Floating Point Multiplication  

Assume A and B are the numbers taken for 

multiplication. It consists of sign bit (Sa, Sb), 

mantissa (Ma, Mb) and exponent (Ea, Eb) [6]. 

Multiplication of Floating point is performed 

through following steps: 

M = Ma * Mb 

E = Ea + Eb - Bias 

S = Sa XOR Sb 

➢ Calculation of Exponent: The exponent is 

added to both binary adders. The input and 

offset are subtracted from the estimates [13]. 

The result received as the intermediate 

exponent. 
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➢ Calculation of significant: Both unsigned 

signifant are multiplied and the decimal point is 

inserted in the multiplication product [14]. The 

result received is known as transitional product. 

➢ Calculation of sign bit: The sign bit depends on 

the numbers. If one of the numbers have 

negative, then result of multiplication is 

negative which can be achieved by Xoring the 

sign of two inputs. 

3. PROPOSED ARCHITECTURE OF 

FLOATING-POINT ARITHMETIC UNIT 

The proposed architecture for floating point 

arithmetic unit is discussed below. It contains the 

flow diagram which describes the various 

components (which can be further used for writing 

the VHDL code) for adder / subtractor and multiplier 

blocks of floating point aritmetic unit.  

3.1 Architecture of floating-point Adder / 

subtractor 

It is well known that floating point numbers have 

three main components i.e., sign bit, mantissa and 

exponent. For two number X and Y, Sx, Sy are 

considered as their sign bit, whereas Mx, My, and Ex, 

Ey are there Mantissa and exponent respectively. 

First of all, we check for sign bit which is Sx and 

Sy and then exoring is done. For the mantissa part the 

Mx, My are compared in mantissa comparator, from 

where we get Mx-gt-My. The exponent of both the 

number Ey and Ex are compared in Exponet 

comparator and from where we have two output Ex 

equal to Ey (Ex-eq-Ey) and Ex greater than Ey 

(Ex-gt-Ey). In next step, the denormalization which is 

addition of 1 bit to the exponent and mantissa is done. 

And we get greater exponent (g-e) and lower 

exponent (l-e). Then for mantissa we get greater 

mantissa (g-m) and lower mantissa (l-m). Exponent 

portion which is “g-e”, and “l-e” goes to subtractor, 

and we get d - e at outcome which goes to barrel 

shifter. From right shifter/ barrel shifter we get shift- 

m which goes to adder/ subtractor block. The sign bit 

decides for the adder/ subtractor where we have the 

mantissa g-m and l-m and the shift-m from where we 

get sum - m as a output.  The output of barrel shifter 

(l-m) and adder/ subtractor (sum - m) is done on 

normalization i.e., 1 is subtractor from mantissa & 

exponent using priority Encoder and left shifter is 

done. And at last, by combing all the three exponents, 

mantissa and sign we get the output “z” which is the 

addition of the two floating point numbers.  

 

 

 
Figure 1: Proposed architecture of floating-point Adder / 

subtractor. 

3.2 Proposed architecture of floating-point 

Multiplier 

Assume X and Y are the numbers taken for 

multiplication. It consists of sign bit (Sx, Sy), 

mantissa (Mx, My) and exponent (Ex, Ey). 

Multiplication of Floating-point numbers is 

explained in following paragraph. 

First of all, the sign bit of both the number is checked. 

If both are not same, then Xoring is done. Then 

23-bits mantissas Mx and My are denormalized 

(addition of 1) and send to 24 bit multiplier, which 

results in 47th bit output. Then 47th bit of multiplied 

mantissa output is sent to adder as a flag bit. The 

exponent of both the number Ex and Ey (8 bit) is 

added along with the flag. When the exponents are 

added, the 127 value (inherit compoenent of 

exponent) is added two times. So, to get the exact 

exponent 127 value is subtracted from the output of 

the exponent adder. Starting 23-bits (select either 

46-24 (for flag = 1) or 45-23 (for flag = 0) depending 

in 47th bit) are selected from multiplier output for 

getting the exact normalized mantissa output. The 

mantissa (normalized output) (p-m) received from 

24- bit multiplier and the output from the subtractor 

which is the exponent portion and also the sign bit 

after Xoring is combined together to form the 

product of two floating point number. 
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Figure 2: Proposed architecture of floating-point multiplier 

3.3 Combined architecture of floating-point 

adder/subtractor and multiplier 

Figure 3 shows the propsed combined architecture of 

floating-point adder/ subtractor and multiplier which 

consist of an adder, a multiplier, 2:1 MUX with a 

selection line.  It shows that the proposed 

architecture will work as adder/Subtractor for 

selection Input s=1, whereas it will work as 

multiplier for s=0. 

 
Figure 3: Proposed architecture of combined floating-point 

architecture of adder/subtractor and multipier 

4. RESULT AND DISCUSSION 

4.1 Simulation Results 

The proposed design is simulated and verified using 

Xilinx Isim simulator. For this a VHDL test-bench is 

written. The proposed architecture is verified for 

both floating point adder/subtractor and multiplier. 

The timing wave forms (with hexadecimal format) 

of simulated design is shown in Figure 4. These 

wave forms clearly indicates that proposed 

architecture will work as adder/Subtractor for 

selection input s=1, whereas it will work as 

multiplier for s=0. For S=0 (Adder/Subtractor), the 

inputs taken are a=0.14, 1.20, 0.67 and b=0.11, 0.45, 

0.34 then we get the output y = 0.25, 1.65, 1.01. 

Similarly for S=1 (Multiplier), the inputs taken are 

a=1.46, 0.89, 1.32 and b=0.78, 1.52, 0.69 then we get 

the output y=2.24, 2.41, 2.01. These result clearlry 

indicates that we got the similar practical simulation 

outputs as compared to theoretical values for adder / 

multipler.

 

.  
Figure 4: Simulation Waveform of proposed floating-point arithmetic unit 

 

4.2 Synthesis Results: 
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The proposed design is syntheised using Xilinx ISE 

2014.4 and implemented on Nexys – 4 DDR FPGA 

(Artix – 7 FPGA Family) Trainer Kit (with actual 

device named as “xc7a100t-3csg324”). VHDL 

Language is used for writing the HDL code of 

proposed deign. The RTL schematic (top and 

internal view) is shown in Figures 5 and 6 

respectively. The top-view clearly indicates the 

various inputs and outputs of the proposed design. 

The internal view represents the different internal 

components like adder, multipler, multiplexer etc. 

Further if we enhance the multiplier/ adder blocks, 

then the detailed gate level netlist components of 

respective block can be visualized. 

 
Figure 5: - RTL Schematic (top view) of Floating-Point 

arithmetic unit 

 
Figure 6: - RTL Schematic (internal view) of Floating-Point 

arithmetic unit 

Table 2 shows the synthesis report, which indicates 

the hardware units used in floating point arithmetic 

units.  Device Utilization summary is represented in 

table 3, which indicates that how many components 

(out of the available FPGA components) are used. 

Theire percentage utilization are also shown in this 

table. The synthesis timing summary (as shown in 

figure 7) indicates the maximum combinational path 

delay of proposed design is 12.926 ns. 

 
Figure 7: - Synthesis timing summary of Floating-Point 

arithmetic unit 

Table 2: Hardware blocks used in proposed design implemented 

for Artix-7 FPGA Kit. 

S. No. Device used  No. of Devices Used 

1 Multiplier 1 

2 Adder/ Subtractor 7 

3 Latches 1 

4 Comparator 3 

5 Multiplexer 47 

6 Xors 2 

 
Table 3: Devices utilization summary of proposed design 

implemented for Artix-7 FPGA Kit. 

Logic utilization 

of devices  

Used  Available Utilization 

Slice register 1 126800 0% 

Slices LUTs 379 63400 0% 

Fully used LUT - 

FF Pairs 

1 379 0% 

Bonded IOBs 97 210 46% 

Number of 

DSP48E1s 

2 240 0% 

5. CONCLUSION 

Floating point calculations occur on system has a 

wide range of values that require fast processing 

times. In general, it may be assumed that fixed point 

implementations are faster and less expensive, 

although floating-point implementations offer a 

higher dynamic range and don't require scaling, 

which may be appealing for algorithms with more 

intricate logic. In this manuscript, an hardware 

efficient architecture of combined floating point 

arithmetic unit is proposed.  In this hardware unit, 

Addition, subtraction and multiplication operations 

are executed according to 32-bit single precision 

floating point algorithm (IEEE-754 standard). The 

VHDL code is written for describing the hardware of 

proposed design. The hardware architecture is 

synthesized using Xilinx ISE Tool and implemented 

on Nexys- 4 DDR- FPGA (Artix - 7 family FPGA) 

Board. Synthesis results indicates that, the propesed 

design has 12.926 ns of prpopogation delay with 

efficient use of limited hardwrae resources.    

REFERENCE 

[1] Muller, J.-M., Elementary Functions: Algorithms and 

Implementation, 2ndedition, Chapter 10, ISBN 
0-8176-4372-9, Birkhäuser, 2006. 

[2] Sasidharan, Anjana, and P. Nagarajan. "VHDL 

Implementation of IEEE 754 floating point 

unit."International Conference on Information 



SKIT Research Journal  VOLUME 12; ISSUE 2:2022 

45 

Communication and Embedded Systems (ICICES2014). 
IEEE, 2014. 

[3] Paschalakis, Stavros, and Peter Lee. "Double precision 
floating-point arithmetic on FPGAs."Proceedings. 2003 

IEEE International Conference on Field-Programmable 
Technology (FPT) (IEEE Cat. No. 03EX798). IEEE, 2003. 

[4] Sunesh, N. V., and P. Sathishkumar. "Design and 

implementation of fast floating point multiplier unit."2015 
International Conference on VLSI Systems, Architecture, 
Technology and Applications (VLSI-SATA). IEEE, 2015. 

[5] Purnima, Shrivastava, et al. "VHDL Environment for Floating 

point Arithmetic Logic Unit-ALU Design and Simulation. 

"Research Journal of Engineering Sciences. ISSN 2278 
(2012): 9472. 

[6] Grover, Naresh, and M. K. Soni. "Design of FPGA based 

32-bit Floating Point Arithmetic Unit and verification of its 

VHDL code using MATLAB."International Journal of 
Information Engineering & Electronic Business 6.1 (2014). 

[7] Rajesh, GOLLA Srinivasulu Mr G., and V. Trimurthulu. 

"Optimized Design and Implementation of IEEE-754 
Floating Point Processor." 

[8] Khushbu Naik and Tarun Lad, “Implementation of IEEE 32 
Bit Single Precision Floating Point Addition and 

Subtraction”, International Journal of Computer Application, 

Volume 5, 

No.3, pp. 107-111, April 2015 

[9] Liu, Fangxin, et al. "Improving neural network efficiency via 

post-training quantization with adaptive floating-point. 
"Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2021. 

[10] IEEE 754-2008, IEEE Standard for Floating-Point 
Arithmetic, 2008. 

[11] Grover, Naresh, and M. K. Soni. "Design of FPGA based 

32-bit Floating Point Arithmetic Unit and verification of its 

VHDL code using MATLAB."International Journal of 
Information Engineering & Electronic Business 6.1 (2014). 

[12] Karan Gumber and Sharmelee Thangjam, “Performance 

Analysis of Floating Point Adderusing VHDL on 
Reconfigurable Hardware”, International Journal of 

Computer Applications, Volume 46, No.9, pp. 1-5, May 

2012 
[13] Paulo S. R. Diniz, Eduardo A.B. da Silva and Sergio L. Netto, 

“Digital Signal Processing: System Analysis and Design”, 

ISBN: 9780511781667, Cambridge University Press 
[14] Pardeep Sharma and Gurpreet Singh, “Analysing Single 

Precision Floating Point Multiplieron Virtex 2P Hardware 

Module”, International Journal of Engineering Research 
andApplications (IJERA), Vol. 2, Issue 5, pp. 2016-2020, 

September- October 2012 


