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Abstract- Piezoelectric functionally graded hollow 

discs are highly used materials. It makes smart 

devices like car hinges, drones, and 

microelectromechanical devices. Shear-induced 

eigenfrequency is much less utilized because it is 

very difficult to analyze. To apply functionally 

graded piezoelectric materials, shear vibration of 

the functionally graded holoow disc has been 

obtained by producing the d15 effect. The d15 has 

a higher coupling coefficient than d33 and d31, so 

it can be utilized to exit shear vibrations in the 

FGPM round hollow disc. Effect on 

eigenfrequency of FGPM round disk has been 

obtained for varying the value of power law index. 

The material property of the functionally graded 

disc varies along the thickness by helping power 

law. The disc is radially polarized, and an electric 

field is applied along the thickness. 
 

Keywords- Piezoelectric material, d33 effect, and 

power law 

 

1. INTRODUCTION 

 

Functionally graded materials are formed by 

compositing one and two materials together, and they 

can also be created by varying the properties of 

materials through the thickness direction [1-2]. This 

can be achieved by using power law, exponential law, 

etc. [3]. The vibration control study of FGPM circular 

disks has gained intensive attention with the 

extensive application of FGPM. In this study, the 

piezoelectric material will be very helpful in 

constructing sensors and actuators and making 

vibration control FGPM structures. Due to strong 

electromagnetic properties, this FGPM circular disc 

has gained wide engineering applications [4]. The 

circular disk using a hare can also detect cracks in 

railway wheels. This FGPM circular disk can be used 

in modern aeronautical, automobile, and space 

industries [5]. FGPM material has very good 

mechanical properties compared to traditional 

materials, such as high heat resistance, high fatigue 

life, and good stiffness, so it can also be used in 

fatigue-loading conditions [6]. Li et al. Analyzed the 

piezo thermoelastic coupling analysis of FGPM 

plates, especially for FGPM annular plates [7]. Dai et 

al. analyzed the free vibration of a circular plate 

composed of transversely isotropic FGPM for a 

uniform magnetic field [8]. Jiangong et al. analyzed 

the characteristics of guided waves in continuous 

FGPM spherically curved plates [9]. Wang et al. 

analyze the axisymmetric bending of circular plates 

[10]. Sharma et al. analyze the vibration behavior of 

FGPM annular plate by using the differential 

quadrature method [11]. 

 

2. MODEL DESCRIPTION 

 

An FGPM circular disk has been selected for analysis 

of the effect of the power law index on 

eigenfrequency on the FGPM round disk. The 

dimensions of the plate are outer diameter DO=24 

mm, the inner diameter of the circular disk is 

Di=2mm, and the thickness of the container is t=1mm 

[12]. The lower surface of the circular disk is PZT-

5H rich, while the above surface is PZT-4 rich. The 

power law uses the make-round disk functionally 

graded. The round disk is radially polarized. The 

electric field is applied along the thickness of the 

round disk. Shear vibration is exited by producing the 

d15 effect. ‘n’ represents the power law index. 'd' 

represent nodal diameter, and 'c' means the nodal 

circle. Triangle shape elements are used to discretize 

annular circular disks. 

 
Fig. 1: Functionally graded piezoelectric circular disk 

(Do=24mm, Di= 2mm, t=1mm) 

2.1 Governing equations  

 {S} = [𝑠𝐸] { 𝜎 } - [d] T {E}................... ... (1) 

{D} = [d] { 𝜎 } + [𝜀𝜎] {E}………….…... (2) 
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Where 𝜎 the stress in (N/m2) and S is strain.𝜀𝜎is the 

electric permittivity at constant stress in (F/m). E is 

the electric field. D is the elastic displacement vector. 

[d] are piezoelectric coupling coefficients [12]. 

 

              3. RESULTS AND DISCUSSION 

 

In this study, eigen frequencies of functionally 

graded circular disks have been evaluated for free-

free, fixed-free, and fixed-fixed boundary conditions; 

free-free means that the inner and outer surface of the 

plate is free.  

 

3.1 Analysis of Eigen frequency of round FGPM 

disk for measuring the effect of power-law variation 

for free-free boundary condition  

Table 1 shows the eigenfrequency result for the free-

free FGPM round disk. Here the power law index n 

varies from 0.5 to 100. The natural frequency of the 

round disk slightly decreases as the value of the 

power law index increases. The lowest natural 

frequency is obtained when the value of the power 

law index is 10. It can also be observed that the 

lowest eigenfrequency is obtained for one nodal 

diameter and zero nodal circles than another pattern. 

Hare n is the power law index, Do is the disk's outer 

diameter, Di is the disk's inner diameter, and t is the 

thickness of the plate. 
 

Table 1 Eigenfrequency (kHz) for a free-free round FGPM 

disk with variation in power-law index 

 

3.1.1 Graphical Representation of eigenfrequency 

when the value of power law index increases for 

free-free boundary conditions 

Figure 2 shows the graphical representation of the 

result here, showing that eigenfrequency decreases 

significantly for zero nodal circles and two nodal 

diameters. While for two nodal diameters and zero 

nodal circles, eigenfrequency reduces by a very less 

amount.  

 

3.2 Analysis of eigenfrequency of round FGPM 

round disk for measuring the effect of power-law 

variation for fixed-free boundary condition  

Table 2 shows the eigenfrequency result for the 

fixed-free FGPM round disk. Here the power law 

index n varies from 0.5 to 100. The natural frequency 

of the round disk slightly decreases as the value of 

the power law index increases. The lowest natural 

frequency is obtained when the value of the power 

law index is 10. It can also be observed that the 

lowest eigenfrequency is obtained for one nodal 

diameter and zero nodal circles than another pattern. 

Hare n is the power law index, Do is the disk's outer 

diameter, and Di is the inner diameter of the disk. 

And t is the thickness of the plate. 

n=0.5 to 10, Do=24 mm, Di=4 mm, t=3 mm 

 

 
 

Fig. 2 : Variation of the natural frequency with power law 

index N for free-free functionally graded piezoelectric round 

disk  

Table 2 Analysis of eigenfrequency of round FGPM disk for 

measuring the effect of power-law variation for fixed-free 

boundary condition  

 

3.2.1 Graphical Representation of eigen 

frequencies when the value of power law index 

varies for fixed-free boundary conditions 

Figure 3 shows that one nodal diameter and zero 

nodal circles have the lowest eigenfrequency.  

 
Fig. 3 : Variation of the natural frequency with power law 

index N for fixed-free functionally graded piezoelectric round 

disc 

 

3.3.1. Graphical Representation of eigen 

frequencies when the value of power law index 

varies for fixed-fixed boundary conditions 

Figure 4 represents the graphical representation of 

the eigenfrequency of a fixed-fixed annular plate. It 

can be observed here that the eigenfrequency's modes 

slope has a downward slope. Four nodal diameters 
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5 4.563 19.140 7.811 38.430 
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5 10.574 15.505 30.211 49.706 

10 10.542 15.474 30.096 49.506 
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and zero nodal circles have higher eigenfrequency 

than the other mode shape. It can be seen that free-

free boundary conditions have the lowest 

eigenfrequency.  
Table 3 Eigenfrequency (kHz) for a fixed-fixed round FGPM 

plate, outer diameter=24 mm, inner diameter=10 mm, the 

height of container =3 mm. 

n (0, 2) (1, 0) (2, 0) (3, 0) (4, 0) 

0.5 68.154 71.267 84.217 106.44 132.68 

1 66.584 69.702 82.523 104.43 130.25 

2 64.616 67.741 80.387 101.87 127.16 

5 62.821 65.953 78.424 99.505 124.29 

10 62.566 65.699 78.144 99.164 123.87 

100 62.558 65.691 78.135 99.153 123.86 

 

 

4. MODE SHAPE FOR FIXED-FIXED FGPM 

CIRCULAR DISK 

 

 
Figure 4 Variation of the natural frequency with power law 

index N for the fixed-fixed functionally graded piezoelectric 

circular disk. 

 

 
Fig. 5 : Mode shapes of the fixed-fixed annular FGPM plate 

(Do=24 mm, Di=4 mm, and t=3 mm, n=100) (a) (0, 2) mode at 

62.558 kHz, (b) (1, 0) mode at 65.691 kHz (c) (2, 0) mode at 

78.135 kHz, and (d) (3, 0) method at 99.153 kHz, (e) (4, 0) 

mode at 123.86 kHz (f) (5, 0) mode at 149Khz 

 

5.  CONCLUSION 

 

Eigenfrequency for the FGPM plate has been 

evaluated, and a comparative study of different 

geometrical parameters has been conducted with 

power law variation. It is observed here that natural 

frequency slightly creases when the value of the 

power law index increases. This FGPM circular disk 

can be used in ultrasonic motors, drones, and many 

smart devices. Here, the natural frequency is higher 

for fixed-fixed boundary conditions than the free and 

fixed-free boundary conditions. The free-free plate's 

natural frequency is much less than the other 

boundary condition for the same nodal circle and 

nodal diameter. The natural frequency obtained here 

is believed to be useful for designing smart systems 

based on FGPM round disks by exited shear 

vibration. Shear-induced flexural vibration for 

varying power law index on the elastic foundation 

can be explored in future work. 
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