
SKIT Research Journal  VOLUME 8; ISSUE 2: 2018 

 

56 

 

Homotopy Analysis solution for MHD flow and Heat 

Transfer of a Radiative Micropolar fluid over a 

Stretching Surface with Heat Generation/ Absorption 
  

Kalpna Sharma, Sumit Gupta 
Department of Mathematics, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur-302017(INDIA) 

Email- guptasumit.edu@gmail.com 

Received 15.07.2018 received in revised form 31.08.2018, accepted 03.09.2018 
 

 Abstract— In this paper, (MHD) boundary layer flow and 

heat transfer of steady two dimensional flow of an 

electrically conducting micropolar fluid over a permeable 

stretching surface in presence of heat generation/ 

absorption are discussed. By using similarity 

transformation, the arising governing equation of 

momentum and energy are transformed into coupled 

nonlinear ordinary differential equations, which are than 

solved by homotopy analysis method (HAM). The 

behavior of different physical parameters, namely, Prandtl 

number P r , micro rotation parameter N, Magnetic 

parameter M  and Radiation parameter 
dR  on the 

velocity and temperature profiles are depicted through 

graphically and tabular form in details. The present 

results are also compared with existing limiting solutions 

showing very good agreements with others. 
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1. INTRODUCTION 
 

The fluid and heat transfer due a stretching sheet has been 

deliberate a remarkable applications such as industrialized of 

polymer sheet, filaments and wires, through the mechanized 

process. The stirring sheet is assumed to extend on its own 

plane and the protracted surface interacts with ambient fluid 

both impulsively and thermally. Sakiadas [1] first discuss the 

boundary layer flow over a surface. He discussed numerical 

solutions of laminar boundary-layer behavior on a moving 

continuous flat surface. Experimental and analytical behavior 

of this problem was presented by Tsou et al. [2] to show that 

such a flow is physically by validating Sakiadas [1] work. 

Crane [3] extended the work of Sakiadas [1] for both linearly 

and exponentially stretching sheet considering steady two-

dimensional viscous flow. Free convective on a vertical 

stretching surface was discussed by Wang [4]. Heat transfer 

analysis over an exponentially stretching continuous surface 

with suction was presented by Elbashbeshy [5]. He obtained 

similarity solutions of the laminar boundary layer equations 

describing heat and flow in a quiescent fluid driven by an 

exponentially stretching surface with suction. Viscoelastic 

MHD flow heat and mass transfer over a stretching sheet with 

dissipation of energy and stress work was discussed by Khan 

 

 
 

et al [6]. Ishak et al. [7] studied heat transfer over a stretching 

surface with variable heat flux in micropolar fluids. Nadeem et 

al. [8] coated boundary layer flow of a Jeffrey fluid over an 

exponential stretching surface with radiation effects. Recently 

Nadeem et al. [9] investigated the MHD boundary layer flow 

of a Casson fluid over an exponentially permeable stretching 

sheet.  

The Homotopy analysis method (HAM) was first 

proposed by Shi Jun Liao [10] in 1992 to solve variety of 

nonlinear equations having various applications in science and 

engineering especially in fluid mechanics [11-12].This 

technique does not depend upon the auxiliary parameter and 

converges very rapidly the approximate solution into exact 

one. Recently many researchers and scientists applied the 

HAM to various fluid flow problems with different geometries 

[13-17]. 
 

2. MATHEMATICAL FORMULATION 

2. Mathematical formulation 

Consider a two dimensional flow of an incompressible, 

electrically conducting incompressible micropolar fluid past a 

stretching surface. The sheet is coinciding with the plane

0y =  and origin is located at 0,y = by which the sheet is 

stretching. A constant magnetic field of strength
0B is applied 

in a direction normal to the plane at 0.y =  The simplified 

two dimensional boundary layer equations governing the flow, 

and heat transfer are as follow: 

(1)                                                               
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where u and v are the velocity components in x and y 

direction, respectively. a>0 is known as stretching rate, ν is 

the kinematic viscosity, N is the micro-rotation parameter,

1G
k

γ= is the micro-rotation constant , ρ is the density of base 

fluid,σ is the electrical conductivity, and T is the ambient  

fluid temperature,
0Q is the internal heat generation/ 

absorption coefficient, pc is the specific heat at constant 

pressure. Here 
wT and T∞  are the temperature of the fluid at 

the wall and ambient temperature  
Using Rosseland approximation for radiation, we have 

 
44 *

3
r

T
q

k y

σ
∗

∂= −
∂ (6)         

       (6) 

where *σ is the Stefan-Boltzman constant, and k
∗

is the 

mean absorption coefficient. Expanding
4

T  in terms of 

Taylor series about T∞  (the free stream temperature) and 

neglecting higher order terms, we have 4 3 44 3 .T T T T∞ ∞≈ −
(7)   

(7)
 

using (6) in (7) we get 
2
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 Introducing the following similarity transformation 

( ) ( ),a fψ ν η= ( ) ,
w

T T

T T
θ η ∞

∞

−=
−

( ),
a

N ax h η
ν

= a
yη

ν
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Where the stream function ψ  is defined as 

u
y

ψ∂=
∂

   and  v
x

ψ∂= −
∂

                                 (10)        (10)

 

using equations  (9)-(10) in equations (1)-(4), the equations of 

linear momentum and energy with their corresponding 

boundary conditions are as follows 
2(1 ) 0,K f f f f M f K h′′′ ′′ ′ ′ ′+ + − − + =        (11) 

                                                                 (11) (2 ) 0,Gh h f′′ ′′− + =                                                                                              

4
1 Pr ( ) 0.

3
d

R f mfθ θ θ τθ  ′′ ′ ′+ + − + = 
 

     (12)

 
       (13) 

�ℎ�� − �2ℎ + ���	 = 0                                            (13) 

 

 Subject to the boundary conditions are as follows 

, 1, 0, 1wf f f h θ′ ′= = = = −  at 0η =  

0, 0, 0f h θ→ → → atη → ∞ (14)      (14) 

Where 
0

f

M B
c

σ
ρ

= is the dimensionless magnetic 

parameter, Pr
ν
α

=  is the Prandtl number, k
K

µ
=  is the 

material parameter, 1G a
G

v
=  is the micro-rotation parameter, 

0

p

Q

a c
τ

ρ
=  is the heat generation (> 0) or absorption (< 0) 

parameter and w
w

v
f

av
= −  is the suction (> 0) or injection 

parameter (< 0). 

The skin friction coefficient and the local Nusselt numbers are 

defines as 

2
,
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Where 
wτ is the shear stress along the stretching surface and 

wq is the surface heat flux, are given by 

0 0

,w w
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Using the non-dimensional variables we obtain  
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Where 
( )

Re w
x

xu x

ν
= is the local Reynolds’s number 

 

Solution of the Problem by the homotopy analysis method 

 

The dimensionless velocities ( ), ( )f hη η  and the temperature

( )θ η  can be expressed by the set of base functions. 

{ exp( ) 0, 0},
k

n k nη η− ≥ ≥  

 By rule of solution expressions and the boundary conditions 

(14), the initial guesses 
0 0,f h  and 

0θ  are selected as 
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with the linear operators as 
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with the property that 
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[ ]6 7exp( ) exp( ) 0.L C Cθ η η− + =        (26) 

where , 1..7iC i =  are arbitrary constants 

The zeroth order deformation problems can be written as 

0
ˆ ˆ ˆ ˆ(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; )],

f f f
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                 (29) 

where [0,1]p ∈ indicates the embedding parameter and 
f

h

,

h
h and θh the nonzero auxiliary parameters. Moreover the 

nonlinear operators ,
f h

N N and Nθ are prescribed as 
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For  0p =  and 1p =  we have 
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auxiliary parameters are so properly chosen that series (31)-

(32) converges when p=1 and thus 
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The resulting problems at the mth-order deformation are 
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                    (48) 

The general solutions of Eqs. (11)-(13) can be written as 
*

1 2 3( ) ( ) exp( ) exp( ),
m m

f f C C Cη η η η= + + − +
    

                 
(49) 

*

4 5( ) ( ) exp( ) exp( ),
m m

h h C Cη η η η= + − +
  

(50) 

*

6 7( ) ( ) exp( ) exp( ).
m m

C Cθ η θ η η η= + − +
  

(51) 

in which 
* *( ), ( )

m m
f hη η and 

* ( )
m

θ η are the particular 

solutions of the Eqs. (43)- (45). Note that the Eqs. (42)- (43) 

can be solved by Mathematica, Maple and Matlab one after 

the other in the order 1,2,3,m = K

 
 

3. GRAPHICS PREPARATION  

 

It can be noticed that the series solutions (43)-(45) contain 

the non-zero auxiliary parameters ,
f

h h
h and .θh We can 

adjust and control the convergence of the HAM solutions with 

the help of these auxiliary parameters. Hence to compute the 

range of admissible values of ,
f h

h h and ,θh we display the 

h -curve of the functions (0), '(0)f h′′ and (0)θ ′ of 15
th

-

order of approximations. Fig.1 depicts that the range of 

admissible values of ,
f

h h
h and θh  are 1.8 0.15,

f
− ≤ ≤ −h

1.5 0.5h− ≤ ≤ −h
and 1.7 0.3.θ− ≤ ≤ −h  The series solution 

(43)-(45) converge in the whole region of η  when 

1.12.
f h θ= = = −h h h  In this paper, the variations of 

emerging parameters on the fluid flow and heat transfer rate 

are being discussed and to show physical behavior of the flow 

problems, the velocity, temperature and heat transfer are 

plotted in Figs [2-4]. 
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Figure 1 : h  curve for 15th order approximations for red dashed line, blue 

dot-dashed line and solid line of ''(0), '(0)f h  and '(0)θ  respectively 

 

 
 

Figure3 : Transverse velocity profile versus Rotation parameter in the case of 

suction (a) and injection (b) 

 

Fig 2 (a) and (b) shows the effects of the magnetic field 

parameter M on the velocity profile. It is observe that with 

increase of magnetic parameter M the velocity is decreases. 

This is the fact that in presence of magnetic field, a Lorentz 

force acts against the fluid flow, which retards the velocity of 

the fluid within the boundary layer thickness for both suction 

and injection. Fig 3 (a) and (b) shows the effects of the 

rotational motion parameter N on the transverse velocity. It is 

observe that with increase of rotational motion parameter the 

velocity is increases. This is due to fact that the more rotation 

in rpm requires more power to rotating the fluid within the 

boundary layer thickness, so the velocity is also increases for 

both suction and injection.  

 
 

Figure 2 : Velocity profile versus magnetic parameter in the case of suction 

(a) (top) and injection (b) (bottom) 

 

Fig. 4 (a) and (b) represented the effect of Prandtl number 

on the temperature profiles in the boundary layer for 

stretching surface. It has been noticed that the temperature 

decreases with the increase of the Prandtl number. This is the 

fact that the increases in the Prandtl number decrease the 

thermal boundary layer thickness, lower the temperature 

within the boundary layer with increases the Prandtl number. 

Prandtl number shows the ratio of momentum diffusivity to 

thermal diffusivity. The figure reveals that an increase in 

Prandtl number Pr, results in a decrease in the temperature 

distribution at a particular point of flow. 
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Figure 4 : Temperature profile versus Prandtl number in the case of suction 

(a) and injection (b) 

 

4.  CONCLUSION 

 

The series solution of (MHD) boundary layer flow and heat 

transfer of steady two dimensional flow of an electrically 

conducting micropolar fluid over a permeable stretching 

surface in presence of heat generation/ absorption is discussed. 

The behavior of embedding parameter is examined. An 

analytical technique well known as homotopy analysis method 

(HAM) has been applied to determine the solutions of the 

governing non-linear ordinary differential equations. 

Graphical illustrations were shown subsequent to the flow 

characteristics for the velocity and temperature with the 

various associated physical parameters. 
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