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Abstract- Pressure vessels are an essential component 
in industrial applications, where cost-effective design is 
critical. This paper presents the minimization of total 
cost of the pressure vessel with appropriate constraints 
using TLBO algorithm. The dimensions of the pressure 
vessel are considered as design variables. The 
optimized results achieved using the TLBO algorithm 
are evaluated against those derived from other 
optimization methods. The analysis concludes that 
TLBO demonstrates greater computational efficiency 
and ease of implementation. 
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1. INTRODUCTION 
Pressure vessels are essential in sectors like 
chemicals, petroleum, nuclear energy, and 
aerospace. These structures are intended to contain 
liquids or gases under high pressure, and their design 
must guarantee safety, efficiency, and cost-
effectiveness. The optimization of pressure vessel 
design requires balancing various objectives, 
including reducing material expenses, 
manufacturing costs, and weight while meeting 
safety regulations and operational needs. This 
represents a traditional engineering optimization 
challenge, frequently tackled with sophisticated 
computational methods.  
In the 1980s and 1990s, Optimization methods as 
computational tools were applied.  The pressure 
vessel design problems were solved using some 
traditional methods [1-8]. These techniques are 
intended to reduce material consumption or 
manufacturing expenses while maintaining 
adherence to safety regulations specified in 
standards such as the ASME Boiler and Pressure 
Vessel Code. Nevertheless, conventional 
optimization methods frequently encountered 
difficulties due to the nonlinear and multimodal 
characteristics of pressure vessel issues, resulting in 
either inadequate solutions or high computational 
costs. 

Metaheuristic algorithms have transformed 
optimization in engineering, especially for intricate 
and constrained challenges. Some of the algorithms 
outlined in references [9-23] became widely used 
methods for addressing nonlinear design challenges. 
These algorithms utilize principles from biology and 
natural systems to navigate the solution space more 
efficiently than deterministic approaches. The 
performance of these optimization algorithms can be 
significantly influenced by the need for carefully 
tuned algorithmic parameters to ensure convergence. 
Selecting these parameters adds complexity to the 
optimization process and can vary depending on the 
specific problem at hand. Moreover, such algorithms 
are not always guaranteed to identify global optima 
within a predefined timeframe. Their convergence 
rates are often slow, resulting in increased 
computational costs, particularly for high-
dimensional or nonlinear problems. This limitation 
has prompted a search for alternative methods, such 
as metaheuristics, which aim to reduce dependency 
on parameter tuning and improve convergence 
efficiency. 
In this study, the design problem of pressure vessel 
is solved using TLBO algorithm, and s performance 
evaluated against other optimization methods. 
This paper is organized in sections as described in 
details. 
 

2. FORMULATION OF OPTIMIZATION 
PROBLEM 

This section formulates the minimization problem as 
total cost of the pressure vessel with appropriate 
constraints and solved using TLBO algorithm.  The 
dimensions of the pressure vessel as shown in Figure 
1 are considered as design variables. 
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Figure 1: Pressure vessel

Vector form is written like 

The formulation is given [4] as

Subjected to

(1)

To achieve an optimal solution, an unconstrained 
problem of equation (1) is written using a penalty 
function approach as outlined in reference [24]. In 
this method, the violation of constraints adds large 
penalty value to the objective function, effectively 
guiding the optimization process toward feasible 
regions of the solution space. This transformation 
guarantees the identification of the global optimum 
by ensuring that all constraints are satisfied through 
an appropriate optimization algorithm.
The reformulated unconstrained minimization
problem is written as:

Where represents the higher value added to
function if constraints are violated. Thus, function 
is outlined like

Figure 2: A flow chart of TLBO algorithm [25]
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3. RESULTS AND DISCUSSIONS 
 
This section describes the optimum results of the 
formulated optimization problem using the TLBO, 
which involves the teaching and learning (student) 
phases. These phases are mathematically modeled 
and implemented to guide the optimization process. 
TLBO obtains the optimal solution using population. 
The execution of TLBO is less complex than other 
metaheuristic algorithms. Also, no complex 
parameters are required [26,27]. In this approach, 
learners represent the population of potential 
solutions, and courses are analogous to the design 
variables in the optimization problem.  The course 
marks of the learners correspond to the numerical 
values of these design variables, while their 
performance outcomes are comparable to the fitness 
function values in the optimization process. The 
iteration in the TLBO algorithm is done through 
phases until the desired solution is obtained. The 
TLBO algorithm is described by a flow chart in 
Figure 2. 
The TLBO algorithm is applied to the design 
problem outlined in Equation (1) using a population 
size of 20 and running for 100 iterations. The best 
and average values of the function are achieved by 
performing 10 runs. The convergence rates for both 
function values are depicted in Fig. 3. The algorithm 
achieved the best and average function values of 
6059.700 and 6059.740, respectively, within 2000 

function evaluations. These outcomes, detailed in 
Table 1 demonstrate that the TLBO algorithm 
outperforms other optimization methods to achieve 
superior objective function values with fewer 
function evaluations. 
 

              Figure 3: The convergence history for design problem 
 
 

 
Table 1:  Optimum results for given problem 

 

Design variables 
 

EP [10] EA [11] GA [14] PSO [17]   MPSO [19] This Study 

 0.625 0.5 0.4375 0.4375  0.4375 0.4375 

 1 0.9345 0.8125 0.8125  0.8125 0.8125 

 90.7821 112.679 176.654 176.6366  176.636792 176.636792 

 51.1958 48.329 40.0974 42.09845  42.098446 42.098446 

 7108.616 6410.381 6059.946 6059.714  6059.718932 6059.700 

Function 
Evaluations 

100000 42000 30000 30,000  4,00000 2000 

Constraints 
violation 

None None None None  None None 



SKIT Research Journal                Vol 15; ISSUE 1:2025               ISSN: 2278-2508(P) 2454-9673(O) 
 

89 
 

4. CONCLUSIONS  
 
In this study, TLBO successfully minimized the cost 
of constructing the pressure vessel by optimizing key 
design variables such as shell thickness, head 
thickness, and overall dimensions, all while adhering 
to stringent safety and performance constraints. The 
results not only highlight the capability of TLBO to 
solve complex engineering problems but also 
emphasize its versatility in handling multi-variable, 
non-linear optimization tasks prevalent in the 
construction industry. Thus, TLBO gives the better 
optimized results compared to other optimization 
techniques. 
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